Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GenoMyc binding

30.04.2003


Two papers in the May 1 issue of Genes & Development reveal unexpectedly widespread genomic binding by the Myc protein – prompting scientists to consider that this highly studied human oncogene may still have a few secrets to reveal.



Independent research groups led by Drs. Robert Eisenman (Fred Hutchinson Cancer Center) and Bruno Amati (European Institute of Oncology) report on the first genome-wide analyses of in vivo Myc targets in the Drosophila and human genomes, respectively. As the myc gene is mutated in approximately one-third of all human cancers, the identification of the full range of genes that interact with Myc under normal conditions will be important to understanding how abnormal myc expression can lead to cancer.

The myc gene encodes a transcription factor (Myc) that, together with a partner protein (Max), binds to specific DNA sequences to regulate gene expression. myc is classified as an oncogene because genetic mutations that result in over-expression of Myc protein promote unregulated cell proliferation and cancer. While Myc has an established role in directing cell growth, proliferation, differentiation, and death, the precise molecular pathways of Myc action are still largely unknown.


"A major problem in understanding how Myc exerts its profound effects on cellular functions has been the determination of the nature and number of its binding sites on DNA," states Dr. Eisenman. Previous attempts to identify Myc-regulated genes have provided incomplete pictures of Myc targets, complicated by such issues as direct versus indirect interactions and physiological relevance.

These two papers represent a significant advance in the effort to identify DNA sequences that bind Myc. Using completely different experimental approaches and biological systems, both research teams arrived at a similar result: Myc binds to ~10% of all genes.

Dr. Eisenman and colleagues used Drosophila to study where Myc (and its associated proteins, Max and Mnt) binds to in the fly genome. The researchers employed a so-called "DamID approach" to tag Myc-binding sites. By expressing a fusion protein of the bacterial Dam methylase enzyme with Myc in fly cells, Dr. Eisenman and colleagues were able to mark each region of Myc binding with methyl groups. The presence of these "methylation markers" enabled the researchers to distinguish regions of direct Myc-binding from the rest of the genome, isolate the sequences of interest, and then use microarray analysis to identify the encoded genes.

In contrast, Dr. Amati’s group used human cells to identify Myc target genes. The researchers focused on those genes that bind Myc through the consensus "E-box" DNA sequence (CACGTG). Dr. Amati and colleagues used bioinformatics tools to scan the human genome and identify genes containing one or more E-boxes in the proximity of their promoter (the portion of the gene where transcription begins). Of the 1630 gene loci identified, approximately 700 underwent further biochemical characterization to determine which E-box-containing genes bind Myc in vivo. As in flies, the results were surprising.

As Dr. Amati explains, "In addition to identifying 257 genes that are bound by Myc in the human genome, our data also reveals that Myc must bind at least one tenth of all cellular genes or, in other words, several thousand genes. This unexpected degree of complexity is a fundamental feature that is conserved between humans and flies."

Taken together, these two studies provide the most comprehensive enumeration of direct, in vivo Myc targets. The conclusion that Myc binds a large portion of both the fly and human genome dramatically alters previous views of Myc’s activity and the complexity of its biological interactions. Rather than consider a limited number of genes to be targets of Myc, it is now apparent that Myc exerts an extremely widespread influence over the vertebrate genome.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>