Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GenoMyc binding

30.04.2003


Two papers in the May 1 issue of Genes & Development reveal unexpectedly widespread genomic binding by the Myc protein – prompting scientists to consider that this highly studied human oncogene may still have a few secrets to reveal.



Independent research groups led by Drs. Robert Eisenman (Fred Hutchinson Cancer Center) and Bruno Amati (European Institute of Oncology) report on the first genome-wide analyses of in vivo Myc targets in the Drosophila and human genomes, respectively. As the myc gene is mutated in approximately one-third of all human cancers, the identification of the full range of genes that interact with Myc under normal conditions will be important to understanding how abnormal myc expression can lead to cancer.

The myc gene encodes a transcription factor (Myc) that, together with a partner protein (Max), binds to specific DNA sequences to regulate gene expression. myc is classified as an oncogene because genetic mutations that result in over-expression of Myc protein promote unregulated cell proliferation and cancer. While Myc has an established role in directing cell growth, proliferation, differentiation, and death, the precise molecular pathways of Myc action are still largely unknown.


"A major problem in understanding how Myc exerts its profound effects on cellular functions has been the determination of the nature and number of its binding sites on DNA," states Dr. Eisenman. Previous attempts to identify Myc-regulated genes have provided incomplete pictures of Myc targets, complicated by such issues as direct versus indirect interactions and physiological relevance.

These two papers represent a significant advance in the effort to identify DNA sequences that bind Myc. Using completely different experimental approaches and biological systems, both research teams arrived at a similar result: Myc binds to ~10% of all genes.

Dr. Eisenman and colleagues used Drosophila to study where Myc (and its associated proteins, Max and Mnt) binds to in the fly genome. The researchers employed a so-called "DamID approach" to tag Myc-binding sites. By expressing a fusion protein of the bacterial Dam methylase enzyme with Myc in fly cells, Dr. Eisenman and colleagues were able to mark each region of Myc binding with methyl groups. The presence of these "methylation markers" enabled the researchers to distinguish regions of direct Myc-binding from the rest of the genome, isolate the sequences of interest, and then use microarray analysis to identify the encoded genes.

In contrast, Dr. Amati’s group used human cells to identify Myc target genes. The researchers focused on those genes that bind Myc through the consensus "E-box" DNA sequence (CACGTG). Dr. Amati and colleagues used bioinformatics tools to scan the human genome and identify genes containing one or more E-boxes in the proximity of their promoter (the portion of the gene where transcription begins). Of the 1630 gene loci identified, approximately 700 underwent further biochemical characterization to determine which E-box-containing genes bind Myc in vivo. As in flies, the results were surprising.

As Dr. Amati explains, "In addition to identifying 257 genes that are bound by Myc in the human genome, our data also reveals that Myc must bind at least one tenth of all cellular genes or, in other words, several thousand genes. This unexpected degree of complexity is a fundamental feature that is conserved between humans and flies."

Taken together, these two studies provide the most comprehensive enumeration of direct, in vivo Myc targets. The conclusion that Myc binds a large portion of both the fly and human genome dramatically alters previous views of Myc’s activity and the complexity of its biological interactions. Rather than consider a limited number of genes to be targets of Myc, it is now apparent that Myc exerts an extremely widespread influence over the vertebrate genome.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>