Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GenoMyc binding

30.04.2003


Two papers in the May 1 issue of Genes & Development reveal unexpectedly widespread genomic binding by the Myc protein – prompting scientists to consider that this highly studied human oncogene may still have a few secrets to reveal.



Independent research groups led by Drs. Robert Eisenman (Fred Hutchinson Cancer Center) and Bruno Amati (European Institute of Oncology) report on the first genome-wide analyses of in vivo Myc targets in the Drosophila and human genomes, respectively. As the myc gene is mutated in approximately one-third of all human cancers, the identification of the full range of genes that interact with Myc under normal conditions will be important to understanding how abnormal myc expression can lead to cancer.

The myc gene encodes a transcription factor (Myc) that, together with a partner protein (Max), binds to specific DNA sequences to regulate gene expression. myc is classified as an oncogene because genetic mutations that result in over-expression of Myc protein promote unregulated cell proliferation and cancer. While Myc has an established role in directing cell growth, proliferation, differentiation, and death, the precise molecular pathways of Myc action are still largely unknown.


"A major problem in understanding how Myc exerts its profound effects on cellular functions has been the determination of the nature and number of its binding sites on DNA," states Dr. Eisenman. Previous attempts to identify Myc-regulated genes have provided incomplete pictures of Myc targets, complicated by such issues as direct versus indirect interactions and physiological relevance.

These two papers represent a significant advance in the effort to identify DNA sequences that bind Myc. Using completely different experimental approaches and biological systems, both research teams arrived at a similar result: Myc binds to ~10% of all genes.

Dr. Eisenman and colleagues used Drosophila to study where Myc (and its associated proteins, Max and Mnt) binds to in the fly genome. The researchers employed a so-called "DamID approach" to tag Myc-binding sites. By expressing a fusion protein of the bacterial Dam methylase enzyme with Myc in fly cells, Dr. Eisenman and colleagues were able to mark each region of Myc binding with methyl groups. The presence of these "methylation markers" enabled the researchers to distinguish regions of direct Myc-binding from the rest of the genome, isolate the sequences of interest, and then use microarray analysis to identify the encoded genes.

In contrast, Dr. Amati’s group used human cells to identify Myc target genes. The researchers focused on those genes that bind Myc through the consensus "E-box" DNA sequence (CACGTG). Dr. Amati and colleagues used bioinformatics tools to scan the human genome and identify genes containing one or more E-boxes in the proximity of their promoter (the portion of the gene where transcription begins). Of the 1630 gene loci identified, approximately 700 underwent further biochemical characterization to determine which E-box-containing genes bind Myc in vivo. As in flies, the results were surprising.

As Dr. Amati explains, "In addition to identifying 257 genes that are bound by Myc in the human genome, our data also reveals that Myc must bind at least one tenth of all cellular genes or, in other words, several thousand genes. This unexpected degree of complexity is a fundamental feature that is conserved between humans and flies."

Taken together, these two studies provide the most comprehensive enumeration of direct, in vivo Myc targets. The conclusion that Myc binds a large portion of both the fly and human genome dramatically alters previous views of Myc’s activity and the complexity of its biological interactions. Rather than consider a limited number of genes to be targets of Myc, it is now apparent that Myc exerts an extremely widespread influence over the vertebrate genome.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>