Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small talk – The gabfest of microbial communication

30.04.2003


ONR-sponsored Bonnie Bassler looks at bacterial communication

She thinks they’re everywhere. What’s more, she thinks they talk to each other.
But don’t snicker…ONR-sponsored Bonnie Bassler won a MacArthur Foundation ’genius award’ last year for her research on how some of the most deadly microbes we know – cholera, plague, TB, just to mention a few – communicate surprisingly well.


In her Princeton Lab, Bassler (and the rest of the microbiology community) calls it ’quorum sensing.’ When microbes sense that there’s more than just a few of them around (i.e., increases in cell population density), a sort of gabfest starts, and this can lead to the production of toxins that make us very, very sick.

Microscopic organisms must rely on simple, yet complex (depending on how you look at it) means of communication. "Quorum sensing" was first discovered in two bacteria in the belly of the cuttlefish: Vibrio harveyi and Vibrio fischeri. These fellows emit light in response to increases in cell population density – they release and detect hormone-like molecules called autoinducers that accumulate in the surrounding aquatic environment as the bacterial cell density increases.

Working with Vibrio harveyi and Vibrio fischeri Bassler and her colleagues discovered that bacteria express a gene called LuxI, which results in the release of special chemicals she calls autoinducers (AI-1) which, in turn, bind to proteins called LuxR on other bacteria nearby. Once the LuxR is activated, a multitude of cellular effects, varying by species, is performed. This is especially useful to bacteria in sensing the size of their colony. Each bacterium constantly emits AI-1, as the number of individuals in a colony grows, so does the amount of AI-1 surrounding them. Once the colony reaches a certain size, a quorum, the amount of LuxI is sufficient to trigger cellular effects. Scores of bacteria species use this quorum sensing every day.

But why would bacteria care how many others are around them? Bacteria are the biggest biomass on the planet, and in order for them to be as successful as they are, they must work together for the good of the colony. Each bacterium is not a ’lone soldier’ so to speak, rather it waits until a sufficient number of others are around to begin producing toxins, or emitting light, etc. "Bacteria can talk to each other," Bassler says. "They take a roll call and the language is LuxI/LuxR."

Bassler’s research is important in the fight against virulent strains of bacteria. Her team’s current work is to find a way to disrupt this LuxI/LuxR language so the bacteria are deafened to the calls of their compatriots. Bassler and colleagues recently showed that cholera bacteria use quorum sensing to regulate their virulence.

"If a bacterium thinks it is alone in the world, it won’t produce the toxins which make us sick, or, for that matter, make biofilms which lead to ship hull fouling" says ONR sponsor Dr. Linda Chrisey. It’s only when many of them get together, and decide to "turn on", that the bacteria become a problem. "Since a disruption-type of therapy wouldn’t kill the bacteria, resistance to these new drugs would be slow to develop. This research has enormous potential for rapid, accurate pathogen sensing and novel antibiotic strategies."

Harmless bacteria can also be used to sense lethal strains. V. harveyi, which uses the LuxI/LuxR language to decide when to glow, can sense LuxI from other harmful species. "These guys can sense the ’who’s who’ of pathogenic bacteria, like anthrax, staph, strep, E. coli, and salmonella," Bassler says. "When V. harveyi senses the AI from other species, it glows brilliantly. In fact, many diverse bacterial functions such as virulence factor production, conjugative DNA transfer, symbiosis, and antibiotic production are now known to be controlled by quorum sensing."

Ah… spoken like a true genius.

Ed Walsh | EurekAlert!
Further information:
http://www.onr.navy.mil/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>