Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Sequence of Bread Mold Revealed by International Scientific Team, Including Hebrew University Researcher

28.04.2003


The genome sequence of the bread mold Neurospora crassa has been revealed by a group of 77 researchers from seven nations, among them Prof. Oded Yarden of the Hebrew University of Jerusalem Faculty of Agricultural, Food and Environmental Quality Sciences.

The achievement, reported in the current issue of Nature magazine, represents a further stage in the history of research on this fungus. A half-century ago, George W. Beadle and Edward L. Tatum won a Nobel Prize for their work on Neurospora, which demonstrated for the first time that specific genes, as units of heredity, also encode the specific proteins that carry out much of the work of the cell.

“This first decoding of the Neurospora genome constitutes a breakthrough in the deeper understanding of the genetic base of this representative of the fungal kingdom. There are consequences as well for other life forms, including that of man,” said Prof. Yarden.



Many of the basic cell processes of fungi are identical to those which take place in animals and humans, a fact which makes it possible to advance research in those life forms. Additionally, it is known that there is a significant number of genes in Neurospora which correspond to human genes. “The ease and speed with which we can conduct experimental work with this fungus will spur research on other genetic frameworks, leading to progress in developing future genetic-based medical treatment,” said Prof. Yarden.

The researchers found that Neurospora has around 10,000 genes – about double that found in bacteria -- as compared to some 14,000 in fruitflies and 21,000-39,0000 in humans. This means that humans are not that far in genetic complexity from the common bread mold.

A point of interest revealed by the scientists is that some 40% of the genes in the Neurospora fungus do not have equivalence in any other organisms. It is possible that future research regarding these genes could lead to development of anti-fungal materials with applications in agriculture and elsewhere, said Prof. Yarden. Genetic engineering techniques could be applied to specific genes, for example, in order to yield improved or new natural materials which could be used in antibiotic medications.

According to Prof. Yarden, there are more than a million types of fungi, found everywhere that life exists. There are those which cause diseases in humans, animals and plants as well as those which are poisonous and which can even be used to create biological weapons. On the other hand, there are many “positive” fungi as well, including those used in creating antibiotics. And there are fungi which function as “factories” for the creation of proteins used in industry, such as in laundry soaps and food products.

A point revealed by the research group is that Neurospora has a number of highly efficient defensive mechanisms which protect it against “foreign” elements, such as viruses or other foreign DNA. A surprise finding in the research was that the Neurospora, which is not a disease-causing fungus, has many genes which are identical to those found in fungi which are parasitical and disease-causing, a fact which poses several questions about the evolution of fungi exhibiting different lifestyles.


For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University of Jerusalem, 02-5882904; Orit Suliltzeanu, spokesperson, 052-608016

Jerry Barach | Hebrew University

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>