Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Sequence of Bread Mold Revealed by International Scientific Team, Including Hebrew University Researcher

28.04.2003


The genome sequence of the bread mold Neurospora crassa has been revealed by a group of 77 researchers from seven nations, among them Prof. Oded Yarden of the Hebrew University of Jerusalem Faculty of Agricultural, Food and Environmental Quality Sciences.

The achievement, reported in the current issue of Nature magazine, represents a further stage in the history of research on this fungus. A half-century ago, George W. Beadle and Edward L. Tatum won a Nobel Prize for their work on Neurospora, which demonstrated for the first time that specific genes, as units of heredity, also encode the specific proteins that carry out much of the work of the cell.

“This first decoding of the Neurospora genome constitutes a breakthrough in the deeper understanding of the genetic base of this representative of the fungal kingdom. There are consequences as well for other life forms, including that of man,” said Prof. Yarden.



Many of the basic cell processes of fungi are identical to those which take place in animals and humans, a fact which makes it possible to advance research in those life forms. Additionally, it is known that there is a significant number of genes in Neurospora which correspond to human genes. “The ease and speed with which we can conduct experimental work with this fungus will spur research on other genetic frameworks, leading to progress in developing future genetic-based medical treatment,” said Prof. Yarden.

The researchers found that Neurospora has around 10,000 genes – about double that found in bacteria -- as compared to some 14,000 in fruitflies and 21,000-39,0000 in humans. This means that humans are not that far in genetic complexity from the common bread mold.

A point of interest revealed by the scientists is that some 40% of the genes in the Neurospora fungus do not have equivalence in any other organisms. It is possible that future research regarding these genes could lead to development of anti-fungal materials with applications in agriculture and elsewhere, said Prof. Yarden. Genetic engineering techniques could be applied to specific genes, for example, in order to yield improved or new natural materials which could be used in antibiotic medications.

According to Prof. Yarden, there are more than a million types of fungi, found everywhere that life exists. There are those which cause diseases in humans, animals and plants as well as those which are poisonous and which can even be used to create biological weapons. On the other hand, there are many “positive” fungi as well, including those used in creating antibiotics. And there are fungi which function as “factories” for the creation of proteins used in industry, such as in laundry soaps and food products.

A point revealed by the research group is that Neurospora has a number of highly efficient defensive mechanisms which protect it against “foreign” elements, such as viruses or other foreign DNA. A surprise finding in the research was that the Neurospora, which is not a disease-causing fungus, has many genes which are identical to those found in fungi which are parasitical and disease-causing, a fact which poses several questions about the evolution of fungi exhibiting different lifestyles.


For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University of Jerusalem, 02-5882904; Orit Suliltzeanu, spokesperson, 052-608016

Jerry Barach | Hebrew University

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>