Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One fig, one wasp? Not always!

28.04.2003


Contrary to prevailing wisdom concerning one of the most famous textbook examples of a tightly co-evolved mutualism, not every fig species is pollinated by its own unique wasp species. In this week’s Proceedings of the National Academy of Sciences, Drude Molbo, postdoctoral fellow at the Smithsonian Tropical Research Institute and collaborators report that two genetically distinct species of wasps are present in at least half of the fig species surveyed.



This new result forces a major reassessment of the vast majority of studies that have used figs as model systems. In one stroke, the findings undermine many current ideas concerning the stability and evolution of mutualisms, while simultaneously strengthening other critical parts of modern evolutionary theory. (sex allocation and local mate competition theory).

Wasps began to pollinate and co-evolve with figs 90 million years ago, even before continental drift separated Old and New World groups. There are over 750 recognized fig species. The diversity and ability to measure costs and benefits that each partner provides the other means that the fig-wasp system provides an ideal model for understanding what each partner stands to gain from a mutualistic relationship. In addition, fig wasps have been used extensively as model systems for testing sex ratio theories, adding significantly to our understanding of evolutionary processes. One of the key assumptions for both model systems has been that a unique wasp species pollinates each fig species.


Molbo developed nuclear microsatellite markers to test the sex ratio theory of local mate competition (Hamilton 1967, Herre 1985, 1989, West et al., 2001). But when she used these markers to genotype wasp offspring from different fig fruits, the results didn’t make sense. Molbo kept getting different sets of genotypes that had nothing in common with those of wasps that supposedly belonged to the same species.

On closer inspection, some figs hosted two cryptic species of pollinator wasp. Molbo´s analysis based on nuclear microsatellites matched perfectly with groupings based on mitochondrial genes sequenced by Carlos Machado (STRI and University of Arizona), which confirmed that cryptic wasps had evolved separately for more than 1.5 million years.

Some cryptic wasp species are actually sister species, i.e. they share the same ancestor and probably evolved within a single host fig species or very closely related species. However, genetically identical wasps may also be found on two different fig hosts, suggesting that new associations may also form from time to time. Overall, these findings indicate that even mutualistic relationships can be much more evolutionarily labile than has previously been appreciated.

This finding has important consequences for our understanding of sex ratio evolution and precision of adaptation. Using the molecular markers that Molbo developed, the collaborators found that the observed sex ratios of fig wasps broods actually comes closer to fitting theoretic predictions when multiple wasp species are considered. This finding signficantly strengthens support for one of the clearest examples of the qualitative and quantitative predictive power of modern evolutionary theory.


Ref. Cryptic species of fig pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation and precision of adaptation. Drude Molbo, Carlos Machado, Jan Sevenster, Laurent Keller and Allen Herre. Proceedings of the National Academy of Sciences. May 13, Vol 100, no 10 pp. 5867-5872.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is one of the world´s leading centers for research on the ecology, evolution and conservation of tropical organisms.


Dr. Drude Molbo | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>