Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers isolate protein needed for stem cell maintenance

28.04.2003


Scientists have finally laid hands on the first member of a recalcitrant group of proteins called the Wnts two decades after their discovery. Important regulators of animal development, these proteins were suspected to have a role in keeping stem cells in their youthful, undifferentiated state - a suspicion that has proven correct, according to research carried out in two laboratories at Stanford University Medical Center. The ability to isolate Wnt proteins could help researchers grow some types of stem cells for use in bone marrow transplants or other therapies.



The gene coding for a protein usually reveals clues about how that protein will react in the lab and how best to isolate it from other molecules. The Wnts are unusual, however, because the way they behave in the lab differs from what the gene suggests. Roeland Nusse, PhD, professor of developmental biology at the School of Medicine and one of the first to isolate a Wnt (pronounced "wint") gene, reports how his lab members overcame these hurdles in the April 27 advance online edition of the journal Nature.

"We found that the protein is modified, explaining why it has been difficult to isolate," said Nusse, who is also an investigator at the Howard Hughes Medical Institute. Although the protein’s structure suggests it should dissolve easily in water, Karl Willert, PhD, a postdoctoral fellow in Nusse’s lab, found that an attached fat molecule makes the protein shun water and prefer the company of detergents instead.


With a Wnt in hand, researchers could finally confirm previous hints that the protein helps stem cells maintain their youthful state. This work, led by Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology, involved cells in the bone marrow called hematopoietic stem cells that generate all blood cells throughout a person’s life. When these cells divide, some offspring go on to become red blood cells, immune cells and other blood components, while other offspring continue the stem cell line.

Experiments carried out by Tannishtha Reya, PhD, a former postdoctoral fellow in Weissman’s lab and now at Duke University, and graduate student Andrew Duncan showed that Wnt protein could cause hematopoietic stem cells to divide. After a week in an environment containing Wnt, mouse hematopoietic stem cells were about six times more likely to be dividing than cells grown in control conditions. What’s more, the majority of cells in the Wnt-containing environment were still stem cells, whereas their counterparts had blossomed into a potpourri of other blood cell types.

Additional experiments by Reya showed that other components of the Wnt pathway also trigger stem cell growth and that the pathway is required for stem cell maintenance. Reya describes these studies in a second Nature paper published alongside Nusse’s work.

"It’s a big deal to understand how these hematopoietic stem cells expand their numbers," Weissman said. With the ability to grow more stem cells in the lab, researchers would have a pool of cells available for research or potential therapies. Many molecules called growth factors cause stem cells to divide, but the new cells all go on to become other blood cell types.

"Whenever we would add these growth factors, at the end of the day we would have many different types of blood cells but no more stem cells than we started with," Weissman said.

The ability to grow hematopoietic stem cells would help doctors who need large numbers of these cells for use in bone marrow transplants. In Nusse’s paper, the researchers led by Reya reported that mouse hematopoietic stem cells grown in the presence of Wnt were better able to replenish the bone marrow of transplant recipients than stem cells grown without the protein.

In addition to the effects on hematopoietic stem cells, members of the Wnt family of proteins may nudge stem cells from other tissues to divide, making them easier to use in potential therapies. What’s more, knowing how stem cells self-renew could lead to ways of blocking self-renewal in the cancer stem cells that populate tumors. "We are now actively looking at whether any mouse or human cancers are using the Wnt pathway," Weissman said.



Additional Stanford researchers who participated in the work include Jeff Brown, PhD, a postdoctoral fellow; Esther Danenberg, a technician; and Laurie Ailles, a graduate student.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>