Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stanford researchers isolate protein needed for stem cell maintenance


Scientists have finally laid hands on the first member of a recalcitrant group of proteins called the Wnts two decades after their discovery. Important regulators of animal development, these proteins were suspected to have a role in keeping stem cells in their youthful, undifferentiated state - a suspicion that has proven correct, according to research carried out in two laboratories at Stanford University Medical Center. The ability to isolate Wnt proteins could help researchers grow some types of stem cells for use in bone marrow transplants or other therapies.

The gene coding for a protein usually reveals clues about how that protein will react in the lab and how best to isolate it from other molecules. The Wnts are unusual, however, because the way they behave in the lab differs from what the gene suggests. Roeland Nusse, PhD, professor of developmental biology at the School of Medicine and one of the first to isolate a Wnt (pronounced "wint") gene, reports how his lab members overcame these hurdles in the April 27 advance online edition of the journal Nature.

"We found that the protein is modified, explaining why it has been difficult to isolate," said Nusse, who is also an investigator at the Howard Hughes Medical Institute. Although the protein’s structure suggests it should dissolve easily in water, Karl Willert, PhD, a postdoctoral fellow in Nusse’s lab, found that an attached fat molecule makes the protein shun water and prefer the company of detergents instead.

With a Wnt in hand, researchers could finally confirm previous hints that the protein helps stem cells maintain their youthful state. This work, led by Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology, involved cells in the bone marrow called hematopoietic stem cells that generate all blood cells throughout a person’s life. When these cells divide, some offspring go on to become red blood cells, immune cells and other blood components, while other offspring continue the stem cell line.

Experiments carried out by Tannishtha Reya, PhD, a former postdoctoral fellow in Weissman’s lab and now at Duke University, and graduate student Andrew Duncan showed that Wnt protein could cause hematopoietic stem cells to divide. After a week in an environment containing Wnt, mouse hematopoietic stem cells were about six times more likely to be dividing than cells grown in control conditions. What’s more, the majority of cells in the Wnt-containing environment were still stem cells, whereas their counterparts had blossomed into a potpourri of other blood cell types.

Additional experiments by Reya showed that other components of the Wnt pathway also trigger stem cell growth and that the pathway is required for stem cell maintenance. Reya describes these studies in a second Nature paper published alongside Nusse’s work.

"It’s a big deal to understand how these hematopoietic stem cells expand their numbers," Weissman said. With the ability to grow more stem cells in the lab, researchers would have a pool of cells available for research or potential therapies. Many molecules called growth factors cause stem cells to divide, but the new cells all go on to become other blood cell types.

"Whenever we would add these growth factors, at the end of the day we would have many different types of blood cells but no more stem cells than we started with," Weissman said.

The ability to grow hematopoietic stem cells would help doctors who need large numbers of these cells for use in bone marrow transplants. In Nusse’s paper, the researchers led by Reya reported that mouse hematopoietic stem cells grown in the presence of Wnt were better able to replenish the bone marrow of transplant recipients than stem cells grown without the protein.

In addition to the effects on hematopoietic stem cells, members of the Wnt family of proteins may nudge stem cells from other tissues to divide, making them easier to use in potential therapies. What’s more, knowing how stem cells self-renew could lead to ways of blocking self-renewal in the cancer stem cells that populate tumors. "We are now actively looking at whether any mouse or human cancers are using the Wnt pathway," Weissman said.

Additional Stanford researchers who participated in the work include Jeff Brown, PhD, a postdoctoral fellow; Esther Danenberg, a technician; and Laurie Ailles, a graduate student.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

Amy Adams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>