Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale study links genetics and reproductive success

23.04.2003


Researchers compare reproduction rates in North Atlantic whales with genetic variation



A recent study focusing on the humpback whales of the Gulf of Maine revealed that differences in reproductive success of whale mothers may play a significant role in changing genetic variation in the population, according to scientists from the Wildlife Conservation Society (WCS), the American Museum of Natural History and their collaborators. Specifically, certain maternal lines of whales have produced more calves than other lines in the past decade, a finding that uncovers the often-complex role of genetics and environment in the makeup of this population of long-lived mammals.

In the study, published in the most recent issue of The Journal of Heredity, researchers compared more than two decades of field observations on humpback whales from the Whale Center of New England with genetic samples collected with biopsy darts, which remove a small piece of skin from the backs of these marine mammals. If current trends continue, the humpback whale population of the Gulf of Maine could show shifts in genetic variation over the next 75 years, with some maternal lines becoming more common than others.


"The humpback whale population in the Gulf of Maine represents an opportunity to compare the life histories of a large group of well-studied individuals with genetic structure," said Dr. Howard Rosenbaum of WCS’s Science Resource Center, the study’s lead author. "This examination gives us a better understanding of how differences in reproductive success among certain whales influences the genetic diversity of wild populations, something that is usually difficult to do on this scale."

The humpback population of the Gulf of Maine has been the focus of numerous field studies and whale watching expeditions, with life history records of individual whales dating back to 1979. Research is further facilitated by the fact that humpback whales can be identified by a variety of unique markings, such as scratches, dorsal fins and white markings beneath the tail flukes that can be viewed as the animal dives.The relationships between individuals--such as mothers and calves--have also been extensively documented over the same time period.

The advent of molecular technology now enables researchers to examine how reproductive success correlates to genetics as well as the environment. Maternal lineages were established for more than 300 individual whales, either through analysis of skin samples as well as from observed relationships from known mothers and their offspring. Of the 19 maternal lineages detected in the study, some will likely increase in frequency in the population over time, while others may level off or disappear entirely, if current trends persist.

"Our discovery that certain maternal lines are more productive or fecund than others illustrates how a population’s genetic diversity can be affected by life histories on a large scale," said Rosenbaum. "This suggests that genetic research can add a valuable component to population projections that contribute to the effectiveness of conservation and management planning."

Rosenbaum’s ongoing research program, which focuses on determining the distribution and abundance of marine mammals in northeastern Madagascar and throughout the southwestern Indian and South Atlantic Oceans, will be featured in the American Museum of Natural History’s newly renovated Irma and Paul Milstein Family Hall of Ocean Life, which reopens to the public on May 17, 2003.

John Delaney | EurekAlert!
Further information:
http://www.wcs.org/

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>