Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researcher discovers melanoma causing gene

22.04.2003


Rutgers Associate Professor Suzie Chen has discovered a gene responsible for melanoma, the most aggressive form of malignant skin cancer. A paper describing the research by Chen and her colleagues at the National Human Genome Research Institute will be published online by Nature Genetics on April 21, and will appear subsequently in a print issue of the journal.



Melanoma may appear in places that never see sun, spread to other parts of the body and become lethal. This type of cancer is not generally responsive to chemotherapy. According to a report from the National Cancer Institute, in the United States the incidence rate of melanoma has more than doubled in the past 20 years.

Chen has been on the track of this gene since her 1995 arrival at Rutgers, The State University of New Jersey. Her research was conducted in the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers’ Ernest Mario School of Pharmacy.


"I did not set out to do a melanoma study," said Chen. "All my life I have been interested in cell transformation and differentiation. In this case, I was investigating how a fat cell becomes a fat cell when I observed that one of the mice in my experiment developed pigmented tumors. Upon further characterization, these tumors were confirmed to be melanoma.

"After many years of work, we identified a gene that was involved in these skin abnormalities and went on to prove that it indeed causes melanoma in the mouse system," said Chen.

Surprisingly, the gene is not a known oncogene – one known to cause cancer – but one whose normal functions are in the brain.

Chen explained that the expression of a given gene, whether it is turned on or off, or when, is tightly regulated by many factors. "It is only in a melanocyte skin cell when the expression of this particular gene is turned on that it leads to the development of melanoma," said Chen. "While in the brain, where it is expressed normally, its functions are associated with learning and memory."

Chen and her collaborators took the next step in this scientific investigation using human biopsy tissues with various stages of melanoma. In more than one third of these human samples, they detected signs of the same aberrant gene expression seen in the laboratory animals that had melanoma. This confirmed that the gene involved in melanoma development in the mice is also implicated in some human melanomas. While there are typically many paths leading to cancer development, this is a breakthrough in pinpointing one of them that occurs in both animals and humans.

"We hope to use this knowledge we’ve gained to investigate better ways of treating the disease. Early detection is key in treating melanoma, but malignant melanoma does not normally respond well to conventional chemotherapy," said Chen. "We need to find more effective ways to treat the disease. The biggest problem we have is our inability to target the tumor cells. Most of the treatments available today affect normal cells, as well. With our understanding of at least one genetic factor in melanoma, we may now have the ability to design a new, more specific drug to target that gene or the protein it expresses," she concluded.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>