Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researcher discovers melanoma causing gene

22.04.2003


Rutgers Associate Professor Suzie Chen has discovered a gene responsible for melanoma, the most aggressive form of malignant skin cancer. A paper describing the research by Chen and her colleagues at the National Human Genome Research Institute will be published online by Nature Genetics on April 21, and will appear subsequently in a print issue of the journal.



Melanoma may appear in places that never see sun, spread to other parts of the body and become lethal. This type of cancer is not generally responsive to chemotherapy. According to a report from the National Cancer Institute, in the United States the incidence rate of melanoma has more than doubled in the past 20 years.

Chen has been on the track of this gene since her 1995 arrival at Rutgers, The State University of New Jersey. Her research was conducted in the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers’ Ernest Mario School of Pharmacy.


"I did not set out to do a melanoma study," said Chen. "All my life I have been interested in cell transformation and differentiation. In this case, I was investigating how a fat cell becomes a fat cell when I observed that one of the mice in my experiment developed pigmented tumors. Upon further characterization, these tumors were confirmed to be melanoma.

"After many years of work, we identified a gene that was involved in these skin abnormalities and went on to prove that it indeed causes melanoma in the mouse system," said Chen.

Surprisingly, the gene is not a known oncogene – one known to cause cancer – but one whose normal functions are in the brain.

Chen explained that the expression of a given gene, whether it is turned on or off, or when, is tightly regulated by many factors. "It is only in a melanocyte skin cell when the expression of this particular gene is turned on that it leads to the development of melanoma," said Chen. "While in the brain, where it is expressed normally, its functions are associated with learning and memory."

Chen and her collaborators took the next step in this scientific investigation using human biopsy tissues with various stages of melanoma. In more than one third of these human samples, they detected signs of the same aberrant gene expression seen in the laboratory animals that had melanoma. This confirmed that the gene involved in melanoma development in the mice is also implicated in some human melanomas. While there are typically many paths leading to cancer development, this is a breakthrough in pinpointing one of them that occurs in both animals and humans.

"We hope to use this knowledge we’ve gained to investigate better ways of treating the disease. Early detection is key in treating melanoma, but malignant melanoma does not normally respond well to conventional chemotherapy," said Chen. "We need to find more effective ways to treat the disease. The biggest problem we have is our inability to target the tumor cells. Most of the treatments available today affect normal cells, as well. With our understanding of at least one genetic factor in melanoma, we may now have the ability to design a new, more specific drug to target that gene or the protein it expresses," she concluded.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>