Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover unique source of stem cells


Scientists report for the first time that "baby" teeth, the temporary teeth that children begin losing around their sixth birthday, contain a rich supply of stem cells in their dental pulp. The researchers say this unexpected discovery could have important implications because the stem cells remain alive inside the tooth for a short time after it falls out of a child’s mouth, suggesting the cells could be readily harvested for research.

According to the scientists, who published their findings online today in the Proceedings of the National Academy of Sciences, the stem cells are unique compared to many "adult" stem cells in the body. They are long lived, grow rapidly in culture, and, with careful prompting in the laboratory, have the potential to induce the formation of specialized dentin, bone, and neuronal cells. If followup studies extend these initial findings, the scientists speculate they may have identified an important and easily accessible source of stem cells that possibly could be manipulated to repair damaged teeth, induce the regeneration of bone, and treat neural injury or disease.

"Doctors have successfully harvested stem cells from umbilical cord blood for years," said Dr. Songtao Shi, a scientist at NIH’s National Institute of Dental and Craniofacial Research (NIDCR) and the senior author on the paper. "Our finding is similar in some ways, in that the stem cells in the tooth are likely latent remnants of an early developmental process."

Shi and colleagues named the cells SHED, which stands for Stem cells from human exfoliated deciduous teeth. The term "deciduous teeth" is the formal name for what most people call colloquially "baby teeth." Children normally develop a set of 20 deciduous teeth, which appear after six months of life and generally are replaced, one tooth at a time, between age 6 and 12.

Shi said the unique acronym was needed to differentiate SHED from stem cells in adult tissues, such as bone or brain. "Stem cell research has exploded during the past seven or eight years, yet people still talk in general terms of postnatal and adult stem cells as though they are one and the same. Postnatal cells from children may act totally differently than adult stem cells, and we felt the inherent difference needed to be emphasized," said Shi.

Today’s finding, as so often happens in science, stems from a chance interaction. As Shi recounts, it happened one evening when his then-six-year-old daughter, Julia, asked for help in pulling out a loose baby tooth. "Once it was out, we sat and looked carefully at the tooth," recalled Shi, a pediatric dentist. "I said, ’Wait a minute, there is some red colored tissue inside of the tooth,’ so I took the tooth to my laboratory the next day and examined it. Sure enough, it had beautiful pulp tissue left over."

A few days later, when another of Julia’s teeth came out, Shi said he was better prepared. He placed the tooth into a liquid medium used to culture cells, drove it to the laboratory, and extracted the dental pulp. Soon thereafter, he succeeded in isolating living stem cells from the tissue, a discovery that would lead to the collection of more exfoliated teeth from Julia and other children.

The group launched an initial round of studies to determine whether the cells would grow well in culture. Using dental pulp extracted from the children’s exfoliated incisors, they discovered that about 12 to 20 stem cells from each tooth reproducibly had the ability to colonize and grow in culture.

"We also found the SHED behaved much differently than dental pulp stem cells from permanent teeth, which our group studied previously," said Dr. Masako Miura, an NIDCR scientist and a lead author on the study. "They exhibited an ability to grow much faster and doubled their populations in culture at a greater rate, suggesting SHED may be in a more immature state than adult stem cells."

Interestingly, Muria said she and her colleagues soon found these cells could be prompted to express proteins on their surface indicative of stem cells that were in the process of switching into bone and dental pulp cells. This discovery led to additional followup experiments, led by Dr. Bai Lu of NIH’s National Institute of Child Health and Human Development (NICHD), to determine whether SHED also possessed the potential to switch into neural and fat cells. The groups found, under specific cell culture conditions, the cells responded accordingly, expressing a variety of proteins indicative of neural and fat cells. "These data are just the start," said Shi. "We’re trying to characterize more fully which cell types can be generated from these stem cells. Can they be switched into nerve cells only? We need to find this out. We’re also interested in determining the difference between adult dental pulp stem cells and those in deciduous teeth."

The NIDCR and NICHD are research components of the federal National Institutes of Health (NIH), part of the U.S. Department of Health and Human Services.

Bob Kuska | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>