Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers solve molecular structure involved with heart disease

17.04.2003


A group of researchers led by the University of Colorado at Boulder have solved the crystal structure of a molecule switch that can trigger heart disease and cancer, paving the way for future drug designs to mitigate these diseases.



The key component of the switch is a protein called MEF2 that binds to the DNA and is involved in muscle cell, T cell and nerve cell development. In cases involving human hearts, it can lower gene activity that causes enlarged hearts, known as hypertrophic cardiomyopathy, said Assistant Professor Lin Chen of CU-Boulder’s chemistry and biochemistry department who is leading the study.

MEF2 works in part by recruiting proteins known as histone deacetylases, or HDACs, that can modify DNA structure to suppress specific gene expression. MEF2 does so by either binding directly to HDACs or to an adaptor protein known as Cabin1 that in turn binds to HDACs.


Chen and his team recently determined the crystal structure of MEF2 that is bound to the molecule Cabin1 on DNA. Their studies revealed for the first time the detailed mechanisms by which MEF2 suppresses genes inside cells.

"The structure not only showed us how genes are properly silenced into a quiescent state by MEF2 and its associated molecules," said Chen, "but more importantly, it also suggested potential mechanisms by which MEF2 activates gene expression when cells are stimulated, especially when cells are inappropriately activated during hypertrophic responses in one’s heart."

A paper on the subject will be published in the April 17 issue of Nature. The first author is Aidong Han, a postdoctoral fellow in the Chen lab. Other authors include James Stroud, a CU graduate student in the Chen lab, and Fan Pan, Hong-Duk Youn and Jun O. Liu from Johns Hopkins University in Baltimore.

MEF2 and HDACs have drawn much attention because of their medical relevance, playing a key role in heart hypertrophy, which is often a response to other heart diseases and eventually turns into heart failure, said Chen. In the Western World, cardiovascular diseases account for about 43 percent of human deaths and for about 50 percent of all human hospitalizations.

The function of HDACs also is the focus of intensive medical research, said Chen. Scientists have shown that inhibitors of HDACs can halt the proliferation of tumor cells and cause them to die.

A number of HDAC inhibitors now are in clinical trials as anti-cancer drugs, he said, and there are continued efforts to search for more specific and less toxic blockers of HDACs. "The picture we have now by which HDACs are recruited to DNA will undoubtedly help this endeavor," he said.

"The structure reported by our lab is exciting because it suggests potential strategies for development of drugs to block the activity of HDACs and prevent MEF2 from activating genes in diseased cells," said Chen. "These drugs may help patients with heart disease and hopefully some cancers, benefiting human health enormously."


Contact:

Lin Chen, 303-735-0071, Lin.Chen@colorado.edu
Aidong Han, 303-492-2503, hanna@colorado.edu
Jim Scott, 303-492-3114

Lin Chen | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Life Sciences:

nachricht “Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination
23.05.2017 | Universität Zürich

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>