Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers solve molecular structure involved with heart disease

17.04.2003


A group of researchers led by the University of Colorado at Boulder have solved the crystal structure of a molecule switch that can trigger heart disease and cancer, paving the way for future drug designs to mitigate these diseases.



The key component of the switch is a protein called MEF2 that binds to the DNA and is involved in muscle cell, T cell and nerve cell development. In cases involving human hearts, it can lower gene activity that causes enlarged hearts, known as hypertrophic cardiomyopathy, said Assistant Professor Lin Chen of CU-Boulder’s chemistry and biochemistry department who is leading the study.

MEF2 works in part by recruiting proteins known as histone deacetylases, or HDACs, that can modify DNA structure to suppress specific gene expression. MEF2 does so by either binding directly to HDACs or to an adaptor protein known as Cabin1 that in turn binds to HDACs.


Chen and his team recently determined the crystal structure of MEF2 that is bound to the molecule Cabin1 on DNA. Their studies revealed for the first time the detailed mechanisms by which MEF2 suppresses genes inside cells.

"The structure not only showed us how genes are properly silenced into a quiescent state by MEF2 and its associated molecules," said Chen, "but more importantly, it also suggested potential mechanisms by which MEF2 activates gene expression when cells are stimulated, especially when cells are inappropriately activated during hypertrophic responses in one’s heart."

A paper on the subject will be published in the April 17 issue of Nature. The first author is Aidong Han, a postdoctoral fellow in the Chen lab. Other authors include James Stroud, a CU graduate student in the Chen lab, and Fan Pan, Hong-Duk Youn and Jun O. Liu from Johns Hopkins University in Baltimore.

MEF2 and HDACs have drawn much attention because of their medical relevance, playing a key role in heart hypertrophy, which is often a response to other heart diseases and eventually turns into heart failure, said Chen. In the Western World, cardiovascular diseases account for about 43 percent of human deaths and for about 50 percent of all human hospitalizations.

The function of HDACs also is the focus of intensive medical research, said Chen. Scientists have shown that inhibitors of HDACs can halt the proliferation of tumor cells and cause them to die.

A number of HDAC inhibitors now are in clinical trials as anti-cancer drugs, he said, and there are continued efforts to search for more specific and less toxic blockers of HDACs. "The picture we have now by which HDACs are recruited to DNA will undoubtedly help this endeavor," he said.

"The structure reported by our lab is exciting because it suggests potential strategies for development of drugs to block the activity of HDACs and prevent MEF2 from activating genes in diseased cells," said Chen. "These drugs may help patients with heart disease and hopefully some cancers, benefiting human health enormously."


Contact:

Lin Chen, 303-735-0071, Lin.Chen@colorado.edu
Aidong Han, 303-492-2503, hanna@colorado.edu
Jim Scott, 303-492-3114

Lin Chen | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>