Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers solve molecular structure involved with heart disease

17.04.2003


A group of researchers led by the University of Colorado at Boulder have solved the crystal structure of a molecule switch that can trigger heart disease and cancer, paving the way for future drug designs to mitigate these diseases.



The key component of the switch is a protein called MEF2 that binds to the DNA and is involved in muscle cell, T cell and nerve cell development. In cases involving human hearts, it can lower gene activity that causes enlarged hearts, known as hypertrophic cardiomyopathy, said Assistant Professor Lin Chen of CU-Boulder’s chemistry and biochemistry department who is leading the study.

MEF2 works in part by recruiting proteins known as histone deacetylases, or HDACs, that can modify DNA structure to suppress specific gene expression. MEF2 does so by either binding directly to HDACs or to an adaptor protein known as Cabin1 that in turn binds to HDACs.


Chen and his team recently determined the crystal structure of MEF2 that is bound to the molecule Cabin1 on DNA. Their studies revealed for the first time the detailed mechanisms by which MEF2 suppresses genes inside cells.

"The structure not only showed us how genes are properly silenced into a quiescent state by MEF2 and its associated molecules," said Chen, "but more importantly, it also suggested potential mechanisms by which MEF2 activates gene expression when cells are stimulated, especially when cells are inappropriately activated during hypertrophic responses in one’s heart."

A paper on the subject will be published in the April 17 issue of Nature. The first author is Aidong Han, a postdoctoral fellow in the Chen lab. Other authors include James Stroud, a CU graduate student in the Chen lab, and Fan Pan, Hong-Duk Youn and Jun O. Liu from Johns Hopkins University in Baltimore.

MEF2 and HDACs have drawn much attention because of their medical relevance, playing a key role in heart hypertrophy, which is often a response to other heart diseases and eventually turns into heart failure, said Chen. In the Western World, cardiovascular diseases account for about 43 percent of human deaths and for about 50 percent of all human hospitalizations.

The function of HDACs also is the focus of intensive medical research, said Chen. Scientists have shown that inhibitors of HDACs can halt the proliferation of tumor cells and cause them to die.

A number of HDAC inhibitors now are in clinical trials as anti-cancer drugs, he said, and there are continued efforts to search for more specific and less toxic blockers of HDACs. "The picture we have now by which HDACs are recruited to DNA will undoubtedly help this endeavor," he said.

"The structure reported by our lab is exciting because it suggests potential strategies for development of drugs to block the activity of HDACs and prevent MEF2 from activating genes in diseased cells," said Chen. "These drugs may help patients with heart disease and hopefully some cancers, benefiting human health enormously."


Contact:

Lin Chen, 303-735-0071, Lin.Chen@colorado.edu
Aidong Han, 303-492-2503, hanna@colorado.edu
Jim Scott, 303-492-3114

Lin Chen | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>