Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt and genes

14.04.2003


Mineral salts are essential for living organisms. To be precise, it is from these, living cells get their basic components, the ions. Common salt, for example, contains chloride and sodium ions which the cell uses to establish and maintain electrochemical balance with the environment.

In order to achieve sodium equilibrium in animal cells, for example, the external sodium concentration has to be ten times greater than the internal one. It is precisely due to this difference in concentration that the cells get their food from their environment. So, sodium equilibrium is fundamental to the life of animals.

These salt concentrations, so important to animals, are, however, detrimental to the majority of plants. In fact, the ion balance in cells is different for animals and plants and the sodium ion is more toxic for plants than for animals.



Nevertheless, in nature there exist plants which are well adapted to salts; examples are those found growing on the coastline and in saline marshes. These plants can live on saline soil and this means that their cells have an innate capacity to combat sodium ion toxicity.

Genes

The ability of these plants to adapt to a salt environment is defined by the gene regulators for ionic balance. These genes are not generally well known and thus their identification and characterisation would be extremely useful, for example, in obtaining plant species with a greater tolerance in saline conditions.

In the laboratory work carried out with these plants, the development of the research is determined by the lengthy growth cycles of the plants. Moreover, the identification of plant genes is not easy, due to their lengthy and complex genome. Nevertheless, a lot of plant genes appear in more simple living organisms. This is why, generally speaking, in order to identify and characterise plant genes, the genes in simple organisms are investigated, although subsequent verification has to be carried out with plants.

In the last decade scientists have based their research on genes which enhance salt tolerance using Saccharomyces cerevisiae yeast as a model. In fact, this micro-organism uses the same mechanism that plants use to maintain ionic balance.

Since then the Biochemical Laboratory at the University of the Basque Country in Donostia (San Sebastian), has been working on the genes which help this yeast to adapt to salty environments. Thus, using advanced molecular biology techniques, they have isolated and identified these genes. Finally, knowing how these genes minimise salt toxicity in this yeast, they have attempted to achieve the same effect in plants used for consumption.

In this work the researchers have been cooperating with foreign research teams and the results achieved have been highly interesting, improving the salt tolerance of two species in a substantial way.


Notes

Project director: Iñigo Fernandez de Larrinoa
Work-team: I. Mendizabal, M. Santos, I. Saldaña
Department: Applied Chemistry (laboratory of Biochemistry and Molecular Biology)
Faculty: Chemical Sciences(Donostia)

Garazi Andonegi | Basque research
Further information:
http://www.ehu.es

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>