Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt and genes

14.04.2003


Mineral salts are essential for living organisms. To be precise, it is from these, living cells get their basic components, the ions. Common salt, for example, contains chloride and sodium ions which the cell uses to establish and maintain electrochemical balance with the environment.

In order to achieve sodium equilibrium in animal cells, for example, the external sodium concentration has to be ten times greater than the internal one. It is precisely due to this difference in concentration that the cells get their food from their environment. So, sodium equilibrium is fundamental to the life of animals.

These salt concentrations, so important to animals, are, however, detrimental to the majority of plants. In fact, the ion balance in cells is different for animals and plants and the sodium ion is more toxic for plants than for animals.



Nevertheless, in nature there exist plants which are well adapted to salts; examples are those found growing on the coastline and in saline marshes. These plants can live on saline soil and this means that their cells have an innate capacity to combat sodium ion toxicity.

Genes

The ability of these plants to adapt to a salt environment is defined by the gene regulators for ionic balance. These genes are not generally well known and thus their identification and characterisation would be extremely useful, for example, in obtaining plant species with a greater tolerance in saline conditions.

In the laboratory work carried out with these plants, the development of the research is determined by the lengthy growth cycles of the plants. Moreover, the identification of plant genes is not easy, due to their lengthy and complex genome. Nevertheless, a lot of plant genes appear in more simple living organisms. This is why, generally speaking, in order to identify and characterise plant genes, the genes in simple organisms are investigated, although subsequent verification has to be carried out with plants.

In the last decade scientists have based their research on genes which enhance salt tolerance using Saccharomyces cerevisiae yeast as a model. In fact, this micro-organism uses the same mechanism that plants use to maintain ionic balance.

Since then the Biochemical Laboratory at the University of the Basque Country in Donostia (San Sebastian), has been working on the genes which help this yeast to adapt to salty environments. Thus, using advanced molecular biology techniques, they have isolated and identified these genes. Finally, knowing how these genes minimise salt toxicity in this yeast, they have attempted to achieve the same effect in plants used for consumption.

In this work the researchers have been cooperating with foreign research teams and the results achieved have been highly interesting, improving the salt tolerance of two species in a substantial way.


Notes

Project director: Iñigo Fernandez de Larrinoa
Work-team: I. Mendizabal, M. Santos, I. Saldaña
Department: Applied Chemistry (laboratory of Biochemistry and Molecular Biology)
Faculty: Chemical Sciences(Donostia)

Garazi Andonegi | Basque research
Further information:
http://www.ehu.es

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>