Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Salt and genes


Mineral salts are essential for living organisms. To be precise, it is from these, living cells get their basic components, the ions. Common salt, for example, contains chloride and sodium ions which the cell uses to establish and maintain electrochemical balance with the environment.

In order to achieve sodium equilibrium in animal cells, for example, the external sodium concentration has to be ten times greater than the internal one. It is precisely due to this difference in concentration that the cells get their food from their environment. So, sodium equilibrium is fundamental to the life of animals.

These salt concentrations, so important to animals, are, however, detrimental to the majority of plants. In fact, the ion balance in cells is different for animals and plants and the sodium ion is more toxic for plants than for animals.

Nevertheless, in nature there exist plants which are well adapted to salts; examples are those found growing on the coastline and in saline marshes. These plants can live on saline soil and this means that their cells have an innate capacity to combat sodium ion toxicity.


The ability of these plants to adapt to a salt environment is defined by the gene regulators for ionic balance. These genes are not generally well known and thus their identification and characterisation would be extremely useful, for example, in obtaining plant species with a greater tolerance in saline conditions.

In the laboratory work carried out with these plants, the development of the research is determined by the lengthy growth cycles of the plants. Moreover, the identification of plant genes is not easy, due to their lengthy and complex genome. Nevertheless, a lot of plant genes appear in more simple living organisms. This is why, generally speaking, in order to identify and characterise plant genes, the genes in simple organisms are investigated, although subsequent verification has to be carried out with plants.

In the last decade scientists have based their research on genes which enhance salt tolerance using Saccharomyces cerevisiae yeast as a model. In fact, this micro-organism uses the same mechanism that plants use to maintain ionic balance.

Since then the Biochemical Laboratory at the University of the Basque Country in Donostia (San Sebastian), has been working on the genes which help this yeast to adapt to salty environments. Thus, using advanced molecular biology techniques, they have isolated and identified these genes. Finally, knowing how these genes minimise salt toxicity in this yeast, they have attempted to achieve the same effect in plants used for consumption.

In this work the researchers have been cooperating with foreign research teams and the results achieved have been highly interesting, improving the salt tolerance of two species in a substantial way.


Project director: Iñigo Fernandez de Larrinoa
Work-team: I. Mendizabal, M. Santos, I. Saldaña
Department: Applied Chemistry (laboratory of Biochemistry and Molecular Biology)
Faculty: Chemical Sciences(Donostia)

Garazi Andonegi | Basque research
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>