Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt and genes

14.04.2003


Mineral salts are essential for living organisms. To be precise, it is from these, living cells get their basic components, the ions. Common salt, for example, contains chloride and sodium ions which the cell uses to establish and maintain electrochemical balance with the environment.

In order to achieve sodium equilibrium in animal cells, for example, the external sodium concentration has to be ten times greater than the internal one. It is precisely due to this difference in concentration that the cells get their food from their environment. So, sodium equilibrium is fundamental to the life of animals.

These salt concentrations, so important to animals, are, however, detrimental to the majority of plants. In fact, the ion balance in cells is different for animals and plants and the sodium ion is more toxic for plants than for animals.



Nevertheless, in nature there exist plants which are well adapted to salts; examples are those found growing on the coastline and in saline marshes. These plants can live on saline soil and this means that their cells have an innate capacity to combat sodium ion toxicity.

Genes

The ability of these plants to adapt to a salt environment is defined by the gene regulators for ionic balance. These genes are not generally well known and thus their identification and characterisation would be extremely useful, for example, in obtaining plant species with a greater tolerance in saline conditions.

In the laboratory work carried out with these plants, the development of the research is determined by the lengthy growth cycles of the plants. Moreover, the identification of plant genes is not easy, due to their lengthy and complex genome. Nevertheless, a lot of plant genes appear in more simple living organisms. This is why, generally speaking, in order to identify and characterise plant genes, the genes in simple organisms are investigated, although subsequent verification has to be carried out with plants.

In the last decade scientists have based their research on genes which enhance salt tolerance using Saccharomyces cerevisiae yeast as a model. In fact, this micro-organism uses the same mechanism that plants use to maintain ionic balance.

Since then the Biochemical Laboratory at the University of the Basque Country in Donostia (San Sebastian), has been working on the genes which help this yeast to adapt to salty environments. Thus, using advanced molecular biology techniques, they have isolated and identified these genes. Finally, knowing how these genes minimise salt toxicity in this yeast, they have attempted to achieve the same effect in plants used for consumption.

In this work the researchers have been cooperating with foreign research teams and the results achieved have been highly interesting, improving the salt tolerance of two species in a substantial way.


Notes

Project director: Iñigo Fernandez de Larrinoa
Work-team: I. Mendizabal, M. Santos, I. Saldaña
Department: Applied Chemistry (laboratory of Biochemistry and Molecular Biology)
Faculty: Chemical Sciences(Donostia)

Garazi Andonegi | Basque research
Further information:
http://www.ehu.es

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>