Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Research Shows Sugar to Trigger Growth

14.04.2003


Clemson researcher part of discovery team

Science, a leading international research journal, reports today that a team of scientists, including Clemson University plant biochemist Brandon Moore, has found sugars not only serve as fuel for plants but also as signal compounds to genes critical to cell development and plant growth.

The research is considered to be groundbreaking, providing insights into the fundamental importance sugars play in both plants and animals. Scientists predict the findings will lead to new research on the role sugars have in human development and disorders, such as diabetes and obesity. For now, the research findings are expected to have more impact on agriculture, identifying new ways to improve crop yields.



"In plants, sugars are produced by photosynthesis. The sugars are then used to support all aspects of plant growth and development," said Moore. "Our evidence proves that glucose functions in plants not only as a nutrient, but also as a signal compound that affects the expression of many different genes involved in most vital processes. These include genes that code for proteins related to seed germination, root, shoot, and leaf growth, flowering and aging. The regulation of gene expression by glucose and other sugars indicates that these nutritional molecules act also as hormones."

The long-term goal of Moore’s research is to understand sugar sensing mechanisms.

"By examining the function of sugar sensors, identifying the components of the signal processes and determining the gene targets of sugar signaling, we can use our understanding of sugar control processes to manipulate specific targets related to crop yield," said Moore.

Moore and his colleagues are working with a model species, Arabidopsis, a mustard plant growing in northern temperate climates worldwide. It is a plant whose genome has been completely sequenced. Knowing all of the genes present in an organism is a valuable tool for identifying all of the proteins that control a specific process.

"Many components and targets of glucose signaling are conserved among plants and animals. The recognition of the hormone function of glucose will influence the thinking of scientists and society about our understanding of the metabolic control of gene expression and our approach to solving some types of diabetes and related disorders in glucose metabolism," said Moore.

Moore, 49, joined the Clemson faculty in Fall 2001, coming from Massachusetts General Hospital in Boston. He earned his doctorate from Washington State University at Pullman, Wash.

Peter Kent | Clemson University
Further information:
http://clemsonews.clemson.edu/WWW_releases/2003/April/Sugar_Research.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>