Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Research Shows Sugar to Trigger Growth

14.04.2003


Clemson researcher part of discovery team

Science, a leading international research journal, reports today that a team of scientists, including Clemson University plant biochemist Brandon Moore, has found sugars not only serve as fuel for plants but also as signal compounds to genes critical to cell development and plant growth.

The research is considered to be groundbreaking, providing insights into the fundamental importance sugars play in both plants and animals. Scientists predict the findings will lead to new research on the role sugars have in human development and disorders, such as diabetes and obesity. For now, the research findings are expected to have more impact on agriculture, identifying new ways to improve crop yields.



"In plants, sugars are produced by photosynthesis. The sugars are then used to support all aspects of plant growth and development," said Moore. "Our evidence proves that glucose functions in plants not only as a nutrient, but also as a signal compound that affects the expression of many different genes involved in most vital processes. These include genes that code for proteins related to seed germination, root, shoot, and leaf growth, flowering and aging. The regulation of gene expression by glucose and other sugars indicates that these nutritional molecules act also as hormones."

The long-term goal of Moore’s research is to understand sugar sensing mechanisms.

"By examining the function of sugar sensors, identifying the components of the signal processes and determining the gene targets of sugar signaling, we can use our understanding of sugar control processes to manipulate specific targets related to crop yield," said Moore.

Moore and his colleagues are working with a model species, Arabidopsis, a mustard plant growing in northern temperate climates worldwide. It is a plant whose genome has been completely sequenced. Knowing all of the genes present in an organism is a valuable tool for identifying all of the proteins that control a specific process.

"Many components and targets of glucose signaling are conserved among plants and animals. The recognition of the hormone function of glucose will influence the thinking of scientists and society about our understanding of the metabolic control of gene expression and our approach to solving some types of diabetes and related disorders in glucose metabolism," said Moore.

Moore, 49, joined the Clemson faculty in Fall 2001, coming from Massachusetts General Hospital in Boston. He earned his doctorate from Washington State University at Pullman, Wash.

Peter Kent | Clemson University
Further information:
http://clemsonews.clemson.edu/WWW_releases/2003/April/Sugar_Research.html

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>