Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of proteins necessary for HIV release suggests possible new therapeutic targets

14.04.2003


Dr. Wesley Sundquist, professor of biochemistry at the University of Utah, will present at the Experimental Biology 2003 meeting in San Diego on his work in elucidating how HIV is manufactured and assembled in the cell.



The raison d’être of a virus such as HIV, if a non-living thing can be said to have one, is to turn a host cell into a factory that churns out virus copies and releases them to infect other cells. Dr. Sundquist’s research has focused on discovering the mechanisms underlying this manufacturing process.

By identifying and characterizing the structures of specific cellular proteins that are crucial to assembling HIV, Dr. Sundquist is providing potential new targets for future anti-HIV drugs. For example, he and his colleagues were the first to show that a protein called TSG101 is required for HIV release. HIV needs TSG101 in order to escape from its host cell in a process termed budding. Dr. Sundquist’s team has also determined the structure of the part of TSG101 to which HIV binds. Finding ways to alter this structure or otherwise block its binding to HIV theoretically would prevent budding and slow or halt the infection.


Sundquist is the 2003 recipient of the ASBMB-Amgen Award. Among the research strengths for which Dr. Sundquist has been lauded is his use of a wide palette of experimental techniques to determine the structures of key components in HIV assembly. By incorporating nuclear magnetic resonance imaging, cryogenic electron microscopy, genetic analysis, and other technologies into his lab, he has produced compelling findings that have made him a leader in the field of HIV research and structural biology.

Perhaps more significantly, Dr. Sundquist not only produces vivid descriptions of important molecular structures but also uses his findings to predict the potential effects of manipulating these molecules. Having identified the three-dimensional structures of two proteins, named Matrix and Capsid, which are key components of the HIV assembly line, Dr. Sundquist and his colleagues now aim to understand exactly how these proteins help assemble the virus. Their studies will guide the development of drugs that target those proteins.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>