Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of proteins necessary for HIV release suggests possible new therapeutic targets

14.04.2003


Dr. Wesley Sundquist, professor of biochemistry at the University of Utah, will present at the Experimental Biology 2003 meeting in San Diego on his work in elucidating how HIV is manufactured and assembled in the cell.



The raison d’être of a virus such as HIV, if a non-living thing can be said to have one, is to turn a host cell into a factory that churns out virus copies and releases them to infect other cells. Dr. Sundquist’s research has focused on discovering the mechanisms underlying this manufacturing process.

By identifying and characterizing the structures of specific cellular proteins that are crucial to assembling HIV, Dr. Sundquist is providing potential new targets for future anti-HIV drugs. For example, he and his colleagues were the first to show that a protein called TSG101 is required for HIV release. HIV needs TSG101 in order to escape from its host cell in a process termed budding. Dr. Sundquist’s team has also determined the structure of the part of TSG101 to which HIV binds. Finding ways to alter this structure or otherwise block its binding to HIV theoretically would prevent budding and slow or halt the infection.


Sundquist is the 2003 recipient of the ASBMB-Amgen Award. Among the research strengths for which Dr. Sundquist has been lauded is his use of a wide palette of experimental techniques to determine the structures of key components in HIV assembly. By incorporating nuclear magnetic resonance imaging, cryogenic electron microscopy, genetic analysis, and other technologies into his lab, he has produced compelling findings that have made him a leader in the field of HIV research and structural biology.

Perhaps more significantly, Dr. Sundquist not only produces vivid descriptions of important molecular structures but also uses his findings to predict the potential effects of manipulating these molecules. Having identified the three-dimensional structures of two proteins, named Matrix and Capsid, which are key components of the HIV assembly line, Dr. Sundquist and his colleagues now aim to understand exactly how these proteins help assemble the virus. Their studies will guide the development of drugs that target those proteins.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>