Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find protein mechanism for potential atherosclerosis development

11.04.2003


Inactivating a protein that helps regulate the proliferation of vascular cells increases the chance of developing atherosclerosis, a major cause of heart disease, researchers at UT Southwestern Medical Center at Dallas have discovered.



Vascular vessels endure constant pounding and considerable stresses associated with blood flow. Vascular smooth muscle cells play an important role in the development of blood vessels, providing structural integrity and the ability to dilate and constrict. The low-density lipoprotein receptor-related protein (LRP1) helps regulate the proliferation and movement of these smooth muscle cells, presumably because LRP1 forms a complex with the receptor for platelet-derived growth factor (PDGF).

In findings reported in today’s issue of Science, a UT Southwestern research team led by Dr. Joachim Herz, professor of molecular genetics and in the Center for Basic Neuroscience, discovered that inactivating LRP1 in vascular smooth muscle cells caused the overexpression of PDGF receptor and abnormal PDGF receptor signaling in mice. Smooth muscle cells proliferated and the vessel wall became highly susceptible to cholesterol buildup.


“We used gene targeting to unravel a mechanism that controls and holds smooth muscle cell proliferation and migration in check,” said Dr. Philippe Boucher, postdoctoral researcher in molecular genetics and first author of the study. “This process is hyperactive in atherosclerosis.”

The absence of LRP1 is unlikely to occur in humans, Herz said, but the research emphasizes the importance of PDGF signaling in the development of atherosclerosis.

Atherosclerosis is a buildup of cholesterol and fatty substances in the lining of arteries. Smooth muscle cells respond to this buildup by proliferating and taking up more cholesterol, resulting in plaque formation. Continued expansion of this plaque leads to arterial obstruction, which often results in heart attack or stroke.

“We wanted to find out whether the smooth muscle cells would abnormally proliferate after LRP1 was inactivated. They do, and the vessel wall is very susceptible to high cholesterol,” said Herz.

The researchers also discovered that Gleevec – a drug used successfully to treat chronic myeloid leukemia – significantly reduced the development of the vessel abnormalities that lead to atherosclerosis. In cancer cells, Gleevec blocks certain signals and prevents a series of chemical reactions that cause cells to rapidly grow and divide.

“We effectively found that Gleevec could reduce atherosclerosis in our mouse models by about 50 percent,” Herz said.

Herz cautioned that the use of Gleevec in this research does not imply it is an alternative therapy for people with high cholesterol.

“It’s better to keep cholesterol levels down and prevent these pathways from being activated,” he said. “The key to preventing atherosclerosis has not changed. People need to keep their blood pressure down, control cholesterol and control diabetes.”


Other UT Southwestern researchers involved in the study were Dr. Wei-Ping Li, assistant professor of cell biology; Dr. Richard Anderson, chairman of cell biology; and Dr. Michael Gotthardt, former postdoctoral researcher at UT Southwestern and now an assistant professor at the Max-Delbrück Center in Berlin.

The research was supported by the National Institutes of Health, the Alzheimer’s Association and the Perot Family Foundation.

Susan Morrison | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>