Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence of chromosome 7 decoded

11.04.2003


Canadian-led project generates database with medical annotation available to the public



Scientists at The Hospital for Sick Children (HSC) have compiled the complete DNA sequence of human chromosome 7 and decoded nearly all of the genes on this medically important portion of the human genome. The research, which involved an international collaboration of 90 scientists from 10 countries, publishes in the online version of the scientific journal Science on April 10, 2003.

Two years ago, a draft (or fragmented) human genome DNA sequence was published by the public Human Genome Project, and separately by Celera Genomics. To coincide with celebrations of the 50th anniversary of the discovery of the structure of DNA, the DNA sequencing phase of the Human Genome Project will be declared completed in April.


"In a massive study, we combined all information in public and private databases, including data generated by Celera Genomics, as well 15 years of our data and analyses to generate what we believe is the most comprehensive description of any human chromosome. Chromosome 7 is often referred to as ’Canada’s chromosome’ because of this country’s major contribution to the mapping and identification of many important disease genes on that chromosome over many years," said the study’s lead author Dr. Stephen Scherer, a senior scientist at The Hospital for Sick Children and an associate professor in the Department of Molecular and Medical Genetics at the University of Toronto (U of T).

"This is the first time that a significant effort has been made to incorporate medical observations with DNA sequence as part of genomic research, which will make it accessible and useful to health-care professionals and researchers outside of the genomics field," said Dr. Johanna Rommens, a study co-author, interim head of the Genetics and Genomic Biology Research Program at HSC, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

There are 23 pairs of chromosomes in the human genome and each person inherits one of each set from their parents. The chromosomes encode genes that control all aspects of human development including some behavioural characteristics.

This study revealed that chromosome 7 contains 158 million nucleotides of DNA (5 per cent of the genome) and 1,455 genes (of the estimated 28,000 protein-coding genes in the human genome), some of which cause diseases such as cystic fibrosis, leukemia, and autism. The project also describes discoveries of sites along the chromosome where invading viruses integrate, ’fragile’ regions prone to breakage, areas called ’gene jungles’ and ’gene deserts’, as well as primate-specific genes.

In the study, all medically relevant landmarks along the chromosome were identified, including the several hundred chromosome breakpoints where disease-related mutations occur. The breakpoints found in autism patients were used to pinpoint specific genes associated with the disorder.

The information generated by the chromosome 7 project has been established in a publicly accessible database that can be used to facilitate disease gene research. For example, a physician can enter the genetic deletions found in a patient and the known phenotypes (manifestations of the genetic mutation) are identified. The chromosome 7 database is available at www.chr7.org (the site is publicly accessible after the journal embargo lifts).

Dr. Martin Godbout, president and CEO of Genome Canada said, "This work represents an unprecedented Canadian contribution to the Human Genome Project. More importantly, it exemplifies how genetic, genomic, and clinician scientists in the public and private sectors worldwide can work together in a common goal to understand the human genome and its role in health and disease."


This research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit http://www.sickkids.ca.

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
416-813-5046
laura.greer@sickkids.ca

Anie Perrault
Vice-President, Communications
Genome Canada
613-751-4460 ext. 13
aperrault@genomecanda.ca

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca/
http://www.sickkids.ca

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>