Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building nanotubes of gallium nitride rather than carbon yields optically active nanotubes

11.04.2003


Transparent gallium nitride nanotubes made by depositing the semiconducting material on nanowires and then evaporating the nanowires. The tubes are hollow with capped ends. (Credit: Peidong Yang/UC Berkeley)


Nanowires and carbon nanotubes, each with their pluses and minuses, are advertised as the next-generation building blocks for electronic circuits a thousand times smaller than today’s semiconductor circuits.

Peidong Yang, a University of California, Berkeley, chemist, has now fabricated a new type of nanotube, made of gallium nitride, that, he says, "captures some of the great properties from nanowires and carbon nanotubes, and eliminates the not-so-good characteristics of both.

"Each of these - semiconductor nanowires, carbon nanotubes and semiconductor nanotubes - will play a big role in nanocircuits of the future."



Yang, an assistant professor of chemistry at UC Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory (LBNL), chemistry graduate student Joshua Goldberger and their colleagues will publish details of their synthesis in the April 10 issue of Nature.

Unlike many other inorganic nanotubes created to date, these nanotubes are perfect single crystals with interesting optical properties carbon nanotubes don’t have. And because it is easy to attach organic molecules to gallium nitride surfaces, the hollow tubes hold promise as chemical sensors.

Gallium nitride also is a material well known in the semiconductor industry, and is used in many optical, high-temperature and high-voltage electronic circuits. Industry’s ability to manipulate gallium nitride means that Yang’s development paves the way for relatively inexpensive, large-scale production of high-quality, uniform nanotubes.

The molecular structure of a carbon nanotube is often depicted as rolled chicken wire, though, in fact, the tube is pure carbon, with dimensions on the order of 1 to 10 nanometers wide and perhaps 100 to 1,000 times that in length. By comparison, a hair is about 100,000 nanometers across. Depending on details of their synthesis, carbon nanotubes can act like conducting metals or semiconductors, and have found use in elementary transistors and chemical sensors.

The tubes have problems, however. It is difficult to make them with predictable properties, and, because they’re hydrophobic, that is, they repel water, it is hard to attach organic molecules like proteins without destroying their electronic properties.

Similarly, nanowires of zinc oxide (ZnO) can be made 100 to 1,000 times longer than their width, and, as Yang proved in 2001, they can be made to emit blue through ultraviolet laser light.

Using his expertise in fabricating zinc oxide nanowires, Yang tried making nanotubes by casting gallium nitride (GaN) around nanowires and then dissolving the nanowires, in a method similar to the lost wax process employed by sculptors in bronze.

Because the crystal or lattice structures of ZnO and GaN are similar, he was able to grow pure crystalline GaN around the nanowires via chemical vapor deposition, then heat everything up to evaporate the ZnO. The precision of his technique led him to call it epitaxial casting, after epitaxy, a precise method of applying thin chemical films to semiconductors and other materials.

Yang’s standard technique for making nanowires creates millions of them at a time in arrays that look, under an electron microscope, like the hairs of a brush. As a result, his first attempts at casting nanotubes employing nanowire templates produced a forest of hollow GaN nanotubes. Tubes can be created with inner diameters ranging from 30 to 200 nanometers and wall thicknesses ranging from 5 to 50 nanometers. Yang sees no barrier to creating GaN nanotubes as long as 20 or more microns, several hundred times their width.

Since his initial experiments, he has succeeded in growing single nanotubes, and he predicts they will have great usefulness in microfluidics to move molecules from one microscopic chamber to another. A process called nanocapillary electrophoresis could separate molecules in the same way as do today’s microscale labs-on-a-chip.

"This opens up the possibility of using these very new nanotubes for nanofluidic applications," said Yang. "For example, you could use them to mimic ion channels like those in cells of the body."

Current techniques for creating nanochannels are low yield and very expensive, he said.

Because GaN nanotubes are essentially transparent, molecules also could be trapped inside and probed with various wavelengths of light.

Yang is particularly intrigued by the potential to attach molecules to the inside and/or outside of these nanotubes and use them as sensors - like little noses that, when they smell something, alter the electrical properties of the nanotube and trigger an electrical signal.

Yang also notes that his epitaxial casting technique could be used to create thin-walled nanotubes of other types of semiconducting materials.

Coauthors with Yang and Goldberger are Rongrui He and Haoquan Yan of UC Berkeley and Yanfeng Zhang, Sangkwon Lee and Heon-Jin Choi of LBNL.

The research was supported by the Camille and Henry Dreyfus Foundation, the Research Corporation, the Hellman Family Faculty Foundation. the Beckman Foundation, the National Science Foundation and the U.S. Department of Energy.

Robert Sanders | UCB
Further information:
http://www.berkeley.edu/news/media/releases/2003/04/09_tubes.shtml

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>