Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers uncover mystery behind how skull plates fuse

10.04.2003


Stanford University Medical Center researchers have identified a protein responsible for ensuring correct skull growth in newborn mice. The protein, called Noggin, inhibits fusion of bony plates in the skull until developmentally appropriate. The scientists hope that Noggin may one day replace surgery as a way to treat premature skull fusion in infants.



"About 1 in 2,000 children has growth plates in their skull that fuse prematurely," said Michael Longaker, MD. "The brain is rapidly expanding in size during the first two years of life. If the brain’s container - the skull - can’t expand in a similar fashion, you have a big problem." Left untreated, the condition can lead to mental retardation, blindness and seizures, as well as a severely misshapen head.

Longaker, a pediatric craniofacial surgeon at Lucile Packard Children’s Hospital and a professor of surgery at the School of Medicine, can correct the defect by removing sections of fused bone from an infant’s skull. But the operation is complex. And because it’s difficult to accurately predict how much room is needed for expansion, the procedure may need to be repeated as the brain grows.


At first, Longaker and his colleagues suspected that the root of the problem was the inappropriate expression of proteins that stimulate bone growth in the skull. They began comparing when and where these proteins were produced, but they started on the wrong track.

"It’s not as simple as promoting bone induction," said Longaker, the principal investigator of the research, which is published in the April 10 issue of Nature. "It turns out that the inhibitors are equally important. We had been missing the point."

The researchers discovered that the bone-promoting proteins are present between all the skull growth plates in mice: those that are actively fusing and those that are not. In contrast, Noggin, a known inhibitor of bone formation, was found only between plates that remained open. The scientists began to suspect that, like a testy chaperone at a high school dance, Noggin keeps the two edges of the skull apart. And like anxious teenagers, the bones reach out to each other when Noggin is removed from the mix.

Noggin’s new role in skull fusion was confirmed dramatically when the scientists injected a Noggin-producing virus between the bone plates along mice foreheads. The plates, which normally would have fused, remained open. This resulted in the animals developing blunt muzzles and wide-set eyes.

Although the results were clear, there was another mystery to be solved. In a seemingly futile loop, the very bone-promoting protein required for fusion also induced Noggin production. Then the researchers found that over-expression of another protein, called FGF2, inhibited Noggin expression in cell culture. The finding correlated with the fact that some human disorders characterized by premature skull fusion are caused by mutations in a receptor for FGF2 that kick the protein into overdrive. These mutants also turned off Noggin expression.

"We had been wondering how FGF2, which is involved in promoting new blood vessels, stimulated bone formation," said Longaker. "Now we know that it works, in part, by decreasing the amounts of inhibitors of bone formation."

The scientists are now working to understand how FGF2 decreases Noggin production, with an eye to a less-invasive treatment for infants with premature fusion. But such treatment would likely require early diagnosis of any problems.

"Can Noggin unlock an existing bone bridge? That would be a tall order," said Longaker. "But if premature fusion could be diagnosed before birth, a window of therapy could present itself." He envisions a day when sophisticated prenatal ultrasound or genetic testing could identify infants at risk before fusion began. By injecting Noggin-producing cells or viruses into the breach between growth plates, physicians could stave off inappropriate fusion until the brain finished expanding.

"Unlike some gene therapy challenges, we wouldn’t need to express Noggin for the life of the child," said Longaker. "The first two years would be adequate." Such a treatment would represent a huge leap over existing therapy. "Craniofacial surgery is more of a chisel-and-saw approach," he added. "We’ve had technical improvements, but it hasn’t really evolved. This finding represents a biomolecular approach that may re-establish normal growth and appearance of the skull, which is the most important research outcome."

Longaker’s colleagues include Stephen Warren, MD, of Stanford; Lisa Brunet, PhD, and Richard Harland, PhD, of the University of California-Berkeley; and Aris Economides, PhD, of Regeneron Pharmaceuticals, Inc, in Tarrytown, NY. Noggin was first identified by Harland in 1992 as a protein that guides tissue fate in developing frog embryos.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. .For more information, please visit the Office of Communication & Public Affairs Web site at http://mednews.stanford.edu/ and the Lucile Packard Children’s Hospital Web site at http://www.lpch.org/.

Krista Conger | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://www.lpch.org/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>