Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers uncover mystery behind how skull plates fuse

10.04.2003


Stanford University Medical Center researchers have identified a protein responsible for ensuring correct skull growth in newborn mice. The protein, called Noggin, inhibits fusion of bony plates in the skull until developmentally appropriate. The scientists hope that Noggin may one day replace surgery as a way to treat premature skull fusion in infants.



"About 1 in 2,000 children has growth plates in their skull that fuse prematurely," said Michael Longaker, MD. "The brain is rapidly expanding in size during the first two years of life. If the brain’s container - the skull - can’t expand in a similar fashion, you have a big problem." Left untreated, the condition can lead to mental retardation, blindness and seizures, as well as a severely misshapen head.

Longaker, a pediatric craniofacial surgeon at Lucile Packard Children’s Hospital and a professor of surgery at the School of Medicine, can correct the defect by removing sections of fused bone from an infant’s skull. But the operation is complex. And because it’s difficult to accurately predict how much room is needed for expansion, the procedure may need to be repeated as the brain grows.


At first, Longaker and his colleagues suspected that the root of the problem was the inappropriate expression of proteins that stimulate bone growth in the skull. They began comparing when and where these proteins were produced, but they started on the wrong track.

"It’s not as simple as promoting bone induction," said Longaker, the principal investigator of the research, which is published in the April 10 issue of Nature. "It turns out that the inhibitors are equally important. We had been missing the point."

The researchers discovered that the bone-promoting proteins are present between all the skull growth plates in mice: those that are actively fusing and those that are not. In contrast, Noggin, a known inhibitor of bone formation, was found only between plates that remained open. The scientists began to suspect that, like a testy chaperone at a high school dance, Noggin keeps the two edges of the skull apart. And like anxious teenagers, the bones reach out to each other when Noggin is removed from the mix.

Noggin’s new role in skull fusion was confirmed dramatically when the scientists injected a Noggin-producing virus between the bone plates along mice foreheads. The plates, which normally would have fused, remained open. This resulted in the animals developing blunt muzzles and wide-set eyes.

Although the results were clear, there was another mystery to be solved. In a seemingly futile loop, the very bone-promoting protein required for fusion also induced Noggin production. Then the researchers found that over-expression of another protein, called FGF2, inhibited Noggin expression in cell culture. The finding correlated with the fact that some human disorders characterized by premature skull fusion are caused by mutations in a receptor for FGF2 that kick the protein into overdrive. These mutants also turned off Noggin expression.

"We had been wondering how FGF2, which is involved in promoting new blood vessels, stimulated bone formation," said Longaker. "Now we know that it works, in part, by decreasing the amounts of inhibitors of bone formation."

The scientists are now working to understand how FGF2 decreases Noggin production, with an eye to a less-invasive treatment for infants with premature fusion. But such treatment would likely require early diagnosis of any problems.

"Can Noggin unlock an existing bone bridge? That would be a tall order," said Longaker. "But if premature fusion could be diagnosed before birth, a window of therapy could present itself." He envisions a day when sophisticated prenatal ultrasound or genetic testing could identify infants at risk before fusion began. By injecting Noggin-producing cells or viruses into the breach between growth plates, physicians could stave off inappropriate fusion until the brain finished expanding.

"Unlike some gene therapy challenges, we wouldn’t need to express Noggin for the life of the child," said Longaker. "The first two years would be adequate." Such a treatment would represent a huge leap over existing therapy. "Craniofacial surgery is more of a chisel-and-saw approach," he added. "We’ve had technical improvements, but it hasn’t really evolved. This finding represents a biomolecular approach that may re-establish normal growth and appearance of the skull, which is the most important research outcome."

Longaker’s colleagues include Stephen Warren, MD, of Stanford; Lisa Brunet, PhD, and Richard Harland, PhD, of the University of California-Berkeley; and Aris Economides, PhD, of Regeneron Pharmaceuticals, Inc, in Tarrytown, NY. Noggin was first identified by Harland in 1992 as a protein that guides tissue fate in developing frog embryos.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. .For more information, please visit the Office of Communication & Public Affairs Web site at http://mednews.stanford.edu/ and the Lucile Packard Children’s Hospital Web site at http://www.lpch.org/.

Krista Conger | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://www.lpch.org/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>