Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme structure holds key to cocaine, heroin metabolism

08.04.2003


Implications for treatment, defense against chemical weapons



A study led by scientists at the University of North Carolina at Chapel Hill offers the first molecular explanation of how the body metabolizes and detoxifies cocaine and heroin. "We show for the first time how humans initiate the breakdown and clearance of these dangerous narcotics," said Dr. Matthew R. Redinbo, assistant professor in the department of chemistry, and in the School of Medicine’s department of biochemistry and biophysics.

"This work also has two potential applications. First, our results can be used to generate an efficient treatment for cocaine overdose. Second, the same system we describe can be engineered to detoxify chemical weapons, including sarin, soman, tabun and VX gases."


A report of the study, published online Monday (April 7) in Nature Structural Biology, presents the first crystal structure of the protein human carboxylesterase 1, or hCE1.

The protein, an enzyme, is a broad-spectrum bioscavenger found throughout the body - in the liver, small intestine, kidney, lungs, testes and scavenger cells. It also circulates to a lesser extent in human blood plasma.

In their report, Redinbo and his group describe how hCE1 is responsible for metabolizing the first step of cocaine breakdown in the body and the first two steps of heroin breakdown. The researchers determined the crystal structure of the enzyme in complexes with analogues of cocaine and heroin.

They found the enzyme could bind to two cocaine molecules simultaneously, but that it specifically generates the primary metabolic breakdown product (metabolite) of cocaine. This indicates that the enzyme holds "significant promise in the treatment of acute cocaine overdose," the report said.

"We need to engineer a more active form of the enzyme that is specific for cocaine. We can do this by generating a small number of changes in the amino acid sequence that would increase the metabolic efficiency," Redinbo said.

When injected into an overdose victim, the enzyme could help metabolize the cocaine before it became toxic, he said.

Heroin poses another problem. It has no activity on its own. "It needs to be broken down a little in the body to make morphine," Redinbo said. "It’s morphine’s activity, hitting opioid receptors in the brain, that provides the feeling of complacency and peace associated with heroin use."

In terms of using hCE1 against chemical weapons, Redinbo said the U.S. military is aggressively seeking to develop the enzyme as a battlefield prophylactic that could be used to detoxify sarin, soman, tabun and VX gases. Chemically, these nerve agents are organophosphate poisons, similar in structure to agricultural weed control chemicals.

"Without the crystal structure, they have been making educated guesses as to where to make changes in the enzyme that would increase its efficiency in detoxifying these agents," said Redinbo. "Now, knowledge of the crystal structure takes much of the guesswork out of identifying the most effective modifications."

The military’s idea is to inject its people with protective enzymes prior to battle, he said; these enzymes have a long serum half-life and could offer several days of protection.

"These chemical weapons kill by impacting nerve endings throughout the body, including in the respiratory system. One could inject or inhale the protectant, and it’s not likely to cause an immune reaction because it’s a human protein," Redinbo said.

It also appears that the enzyme plays a role in cholesterol metabolism - namely, cholesterol transport into and out of the liver. "Its primary evolutionary role may be this function," said study lead author Sompop Bencharit, a chemistry graduate student in Redinbo’s laboratory.

"Our crystal structures of hCE1 will enable the development of highly selective and efficient forms of the enzyme for use in a variety of civilian and military settings," the report said. "The engineering of novel hCE1 enzymes with improved catalytic power toward cocaine or organophosphate poisons is currently in progress."


The National Cancer Institute, a component of the National Institutes of Health, supported the research, which involved a close collaboration with Dr. Philip Potter, an associate member at St. Jude Children’s Research Hospital in Memphis, Tenn.


School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>