Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme structure holds key to cocaine, heroin metabolism

08.04.2003


Implications for treatment, defense against chemical weapons



A study led by scientists at the University of North Carolina at Chapel Hill offers the first molecular explanation of how the body metabolizes and detoxifies cocaine and heroin. "We show for the first time how humans initiate the breakdown and clearance of these dangerous narcotics," said Dr. Matthew R. Redinbo, assistant professor in the department of chemistry, and in the School of Medicine’s department of biochemistry and biophysics.

"This work also has two potential applications. First, our results can be used to generate an efficient treatment for cocaine overdose. Second, the same system we describe can be engineered to detoxify chemical weapons, including sarin, soman, tabun and VX gases."


A report of the study, published online Monday (April 7) in Nature Structural Biology, presents the first crystal structure of the protein human carboxylesterase 1, or hCE1.

The protein, an enzyme, is a broad-spectrum bioscavenger found throughout the body - in the liver, small intestine, kidney, lungs, testes and scavenger cells. It also circulates to a lesser extent in human blood plasma.

In their report, Redinbo and his group describe how hCE1 is responsible for metabolizing the first step of cocaine breakdown in the body and the first two steps of heroin breakdown. The researchers determined the crystal structure of the enzyme in complexes with analogues of cocaine and heroin.

They found the enzyme could bind to two cocaine molecules simultaneously, but that it specifically generates the primary metabolic breakdown product (metabolite) of cocaine. This indicates that the enzyme holds "significant promise in the treatment of acute cocaine overdose," the report said.

"We need to engineer a more active form of the enzyme that is specific for cocaine. We can do this by generating a small number of changes in the amino acid sequence that would increase the metabolic efficiency," Redinbo said.

When injected into an overdose victim, the enzyme could help metabolize the cocaine before it became toxic, he said.

Heroin poses another problem. It has no activity on its own. "It needs to be broken down a little in the body to make morphine," Redinbo said. "It’s morphine’s activity, hitting opioid receptors in the brain, that provides the feeling of complacency and peace associated with heroin use."

In terms of using hCE1 against chemical weapons, Redinbo said the U.S. military is aggressively seeking to develop the enzyme as a battlefield prophylactic that could be used to detoxify sarin, soman, tabun and VX gases. Chemically, these nerve agents are organophosphate poisons, similar in structure to agricultural weed control chemicals.

"Without the crystal structure, they have been making educated guesses as to where to make changes in the enzyme that would increase its efficiency in detoxifying these agents," said Redinbo. "Now, knowledge of the crystal structure takes much of the guesswork out of identifying the most effective modifications."

The military’s idea is to inject its people with protective enzymes prior to battle, he said; these enzymes have a long serum half-life and could offer several days of protection.

"These chemical weapons kill by impacting nerve endings throughout the body, including in the respiratory system. One could inject or inhale the protectant, and it’s not likely to cause an immune reaction because it’s a human protein," Redinbo said.

It also appears that the enzyme plays a role in cholesterol metabolism - namely, cholesterol transport into and out of the liver. "Its primary evolutionary role may be this function," said study lead author Sompop Bencharit, a chemistry graduate student in Redinbo’s laboratory.

"Our crystal structures of hCE1 will enable the development of highly selective and efficient forms of the enzyme for use in a variety of civilian and military settings," the report said. "The engineering of novel hCE1 enzymes with improved catalytic power toward cocaine or organophosphate poisons is currently in progress."


The National Cancer Institute, a component of the National Institutes of Health, supported the research, which involved a close collaboration with Dr. Philip Potter, an associate member at St. Jude Children’s Research Hospital in Memphis, Tenn.


School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>