Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Georgia scientists plot key events in plants’ evolution

08.04.2003


Since Charles Darwin heralded evolution more than 150 years ago, scientists have sought to better understand when and how the vast variety of plants today diverged from common ancestors.



A new University of Georgia study, just published in Nature, demonstrates key events in plant evolution. It allows scientists to infer what the gene order may have looked like in a common ancestor of higher plants. And it shows one way plants may have differentiated from their ancestors and each other.

"By studying the completed sequence of the smallest flowering plant, Arabidopsis, we showed that most of its genes were duplicated about 200 million years ago and duplicated again about 80 million years ago," said Andrew Paterson, a UGA plant geneticist and director of the study. "The ensuing loss of ’extra genes’ caused many of the differences among modern plants."


Two years ago, scientists finished the genetic sequencing of Arabidopsis, a small, weedy plant. It was a major event, the first plant to be completely sequenced. Arabidopsis had been chosen with the assumption that it would be fairly easy, since it was small. Sometimes small packages aren’t so simple.

Seeded throughout its five chromosomes were thousands of genes that seemed to be "junk." When UGA scientists compared all of the genes, they found evidence of duplicated "blocks" of similar sets of genes in two, four or eight different places along the chromosomes.

It’s well known that many plants contain two or more copies of most genes. But why these copies exist and when they occurred has been unknown. Their surprising abundance in the tiny, well-studied Arabidopsis indicates that genome duplications may have played a bigger evolutionary role than was previously thought.

Why were these blocks of genes duplicated? When did this happen? Answering these questions involved a lot of computerized comparing and contrasting.

The scientists repeatedly compared related pairs of Arabidopsis genes with genes from other plants to figure out which genes had been "hanging out with each other," said UGA graduate student Brad Chapman, who coauthored the study, along with John Bowers, Junkang Rong and Paterson. "Genomes with similar blocks of duplication, ’spelled’ in similar ways, had been hanging out together for longer periods of time," Chapman said.

"We tested many, many combinations," Paterson said. "We tested Arabidopsis with cotton, cauliflower, alfalfa, soybeans, tomatoes, rice, pine trees and moss."

After more than 22,000 such comparisons, the results were pooled, and the scientists looked for breakpoints. The breakpoints indicate duplication events, Paterson said. And the study shows that Arabidopsis has duplicated at least twice, and perhaps a third time.

Each time a duplication event occurred, the entire genetic sequence of Arabidopsis doubled. The plant lived on with spare copies of all of its genetic material. And over time, the "extra genes" were shuffled around or lost. It is suspected that this may be one explanation for how different species emerged.

"The duplication event that occurred 200 million years ago occurred in virtually all plants," Paterson said. "The duplication event 80 million years ago affected a lot of plants, but not as many."

The study is attracting attention in the scientific community, because it combines an evolutionary approach with genomic data to learn more about the natural world.

This information will have a significant economic impact because it permits scientists to make better use of the Arabidopsis sequence. It will allow them to study and improve other plants whose DNA hasn’t yet been completely sequenced, such as peanuts, cotton or wheat, saving both time and money.

"For example, we can take the 2,000 genes known on the cotton map, compare them with the Arabidopsis sequence and, with this analysis, make good, educated guesses about where the other 48,000 cotton genes are," Paterson said.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>