Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Georgia scientists plot key events in plants’ evolution

08.04.2003


Since Charles Darwin heralded evolution more than 150 years ago, scientists have sought to better understand when and how the vast variety of plants today diverged from common ancestors.



A new University of Georgia study, just published in Nature, demonstrates key events in plant evolution. It allows scientists to infer what the gene order may have looked like in a common ancestor of higher plants. And it shows one way plants may have differentiated from their ancestors and each other.

"By studying the completed sequence of the smallest flowering plant, Arabidopsis, we showed that most of its genes were duplicated about 200 million years ago and duplicated again about 80 million years ago," said Andrew Paterson, a UGA plant geneticist and director of the study. "The ensuing loss of ’extra genes’ caused many of the differences among modern plants."


Two years ago, scientists finished the genetic sequencing of Arabidopsis, a small, weedy plant. It was a major event, the first plant to be completely sequenced. Arabidopsis had been chosen with the assumption that it would be fairly easy, since it was small. Sometimes small packages aren’t so simple.

Seeded throughout its five chromosomes were thousands of genes that seemed to be "junk." When UGA scientists compared all of the genes, they found evidence of duplicated "blocks" of similar sets of genes in two, four or eight different places along the chromosomes.

It’s well known that many plants contain two or more copies of most genes. But why these copies exist and when they occurred has been unknown. Their surprising abundance in the tiny, well-studied Arabidopsis indicates that genome duplications may have played a bigger evolutionary role than was previously thought.

Why were these blocks of genes duplicated? When did this happen? Answering these questions involved a lot of computerized comparing and contrasting.

The scientists repeatedly compared related pairs of Arabidopsis genes with genes from other plants to figure out which genes had been "hanging out with each other," said UGA graduate student Brad Chapman, who coauthored the study, along with John Bowers, Junkang Rong and Paterson. "Genomes with similar blocks of duplication, ’spelled’ in similar ways, had been hanging out together for longer periods of time," Chapman said.

"We tested many, many combinations," Paterson said. "We tested Arabidopsis with cotton, cauliflower, alfalfa, soybeans, tomatoes, rice, pine trees and moss."

After more than 22,000 such comparisons, the results were pooled, and the scientists looked for breakpoints. The breakpoints indicate duplication events, Paterson said. And the study shows that Arabidopsis has duplicated at least twice, and perhaps a third time.

Each time a duplication event occurred, the entire genetic sequence of Arabidopsis doubled. The plant lived on with spare copies of all of its genetic material. And over time, the "extra genes" were shuffled around or lost. It is suspected that this may be one explanation for how different species emerged.

"The duplication event that occurred 200 million years ago occurred in virtually all plants," Paterson said. "The duplication event 80 million years ago affected a lot of plants, but not as many."

The study is attracting attention in the scientific community, because it combines an evolutionary approach with genomic data to learn more about the natural world.

This information will have a significant economic impact because it permits scientists to make better use of the Arabidopsis sequence. It will allow them to study and improve other plants whose DNA hasn’t yet been completely sequenced, such as peanuts, cotton or wheat, saving both time and money.

"For example, we can take the 2,000 genes known on the cotton map, compare them with the Arabidopsis sequence and, with this analysis, make good, educated guesses about where the other 48,000 cotton genes are," Paterson said.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>