Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Georgia scientists plot key events in plants’ evolution


Since Charles Darwin heralded evolution more than 150 years ago, scientists have sought to better understand when and how the vast variety of plants today diverged from common ancestors.

A new University of Georgia study, just published in Nature, demonstrates key events in plant evolution. It allows scientists to infer what the gene order may have looked like in a common ancestor of higher plants. And it shows one way plants may have differentiated from their ancestors and each other.

"By studying the completed sequence of the smallest flowering plant, Arabidopsis, we showed that most of its genes were duplicated about 200 million years ago and duplicated again about 80 million years ago," said Andrew Paterson, a UGA plant geneticist and director of the study. "The ensuing loss of ’extra genes’ caused many of the differences among modern plants."

Two years ago, scientists finished the genetic sequencing of Arabidopsis, a small, weedy plant. It was a major event, the first plant to be completely sequenced. Arabidopsis had been chosen with the assumption that it would be fairly easy, since it was small. Sometimes small packages aren’t so simple.

Seeded throughout its five chromosomes were thousands of genes that seemed to be "junk." When UGA scientists compared all of the genes, they found evidence of duplicated "blocks" of similar sets of genes in two, four or eight different places along the chromosomes.

It’s well known that many plants contain two or more copies of most genes. But why these copies exist and when they occurred has been unknown. Their surprising abundance in the tiny, well-studied Arabidopsis indicates that genome duplications may have played a bigger evolutionary role than was previously thought.

Why were these blocks of genes duplicated? When did this happen? Answering these questions involved a lot of computerized comparing and contrasting.

The scientists repeatedly compared related pairs of Arabidopsis genes with genes from other plants to figure out which genes had been "hanging out with each other," said UGA graduate student Brad Chapman, who coauthored the study, along with John Bowers, Junkang Rong and Paterson. "Genomes with similar blocks of duplication, ’spelled’ in similar ways, had been hanging out together for longer periods of time," Chapman said.

"We tested many, many combinations," Paterson said. "We tested Arabidopsis with cotton, cauliflower, alfalfa, soybeans, tomatoes, rice, pine trees and moss."

After more than 22,000 such comparisons, the results were pooled, and the scientists looked for breakpoints. The breakpoints indicate duplication events, Paterson said. And the study shows that Arabidopsis has duplicated at least twice, and perhaps a third time.

Each time a duplication event occurred, the entire genetic sequence of Arabidopsis doubled. The plant lived on with spare copies of all of its genetic material. And over time, the "extra genes" were shuffled around or lost. It is suspected that this may be one explanation for how different species emerged.

"The duplication event that occurred 200 million years ago occurred in virtually all plants," Paterson said. "The duplication event 80 million years ago affected a lot of plants, but not as many."

The study is attracting attention in the scientific community, because it combines an evolutionary approach with genomic data to learn more about the natural world.

This information will have a significant economic impact because it permits scientists to make better use of the Arabidopsis sequence. It will allow them to study and improve other plants whose DNA hasn’t yet been completely sequenced, such as peanuts, cotton or wheat, saving both time and money.

"For example, we can take the 2,000 genes known on the cotton map, compare them with the Arabidopsis sequence and, with this analysis, make good, educated guesses about where the other 48,000 cotton genes are," Paterson said.

Kim Carlyle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>