Researchers Discover New Factor in Nerve Regeneration

Researchers in Oxford University’s Department of Human Anatomy have identified a factor involved in the regeneration of neurons in the central nervous system. The discovery and use of this factor could provide the basis for a reparative treatment for both brain and spinal cord injuries.

Unlike lower vertebrates, mammals have lost the ability to repair damage to the brain and spinal cord. Since peripheral nerves are capable of repair, this is thought to be not so much an intrinsic inability of central nervous system (CNS) tissue to repair itself, but rather an environment in the CNS that is hostile to regeneration. This inhibition of neuronal regeneration is a result of a number of factors including axotomy-induced cell death, a gliotic scar that provides a physical barrier to regeneration as well as an environment that is inhibitory to growth. A number of strategies have been employed in the past to overcome this inhibition, including: blocking apoptosis, stem cell therapy, grafting of peripheral nervous system (PNS) cells and delivery of neurotrophic factors. However, the results of these animal studies have been controversial with regard to their claims of significant functional recovery.

Following a great deal of work on the action of Schwann cell conditioned medium (SCCM), which previous research has shown to support the re-growth of neuronal cells, the Oxford inventors have now identified a factor that is responsible for stimulation of neuronal re-growth and have demonstrated its effectiveness for both peripheral and central nervous system neurons. Use of this factor or its analogues may provide the basis for a reparative treatment for brain and spinal cord injury.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on this exciting Oxford discovery. Companies interested in product developments arising from this work are invited to contact Isis.

Media Contact

Jennifer Johnson alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors