Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Factor in Nerve Regeneration

07.04.2003


Researchers in Oxford University’s Department of Human Anatomy have identified a factor involved in the regeneration of neurons in the central nervous system. The discovery and use of this factor could provide the basis for a reparative treatment for both brain and spinal cord injuries.



Unlike lower vertebrates, mammals have lost the ability to repair damage to the brain and spinal cord. Since peripheral nerves are capable of repair, this is thought to be not so much an intrinsic inability of central nervous system (CNS) tissue to repair itself, but rather an environment in the CNS that is hostile to regeneration. This inhibition of neuronal regeneration is a result of a number of factors including axotomy-induced cell death, a gliotic scar that provides a physical barrier to regeneration as well as an environment that is inhibitory to growth. A number of strategies have been employed in the past to overcome this inhibition, including: blocking apoptosis, stem cell therapy, grafting of peripheral nervous system (PNS) cells and delivery of neurotrophic factors. However, the results of these animal studies have been controversial with regard to their claims of significant functional recovery.

Following a great deal of work on the action of Schwann cell conditioned medium (SCCM), which previous research has shown to support the re-growth of neuronal cells, the Oxford inventors have now identified a factor that is responsible for stimulation of neuronal re-growth and have demonstrated its effectiveness for both peripheral and central nervous system neurons. Use of this factor or its analogues may provide the basis for a reparative treatment for brain and spinal cord injury.


Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on this exciting Oxford discovery. Companies interested in product developments arising from this work are invited to contact Isis.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1205.html

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>