Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The structure behind the switch

07.04.2003


USC researchers uncover mechanism of class- switching in antibodies



A team of scientists from the Keck School of Medicine of USC has, for the first time, described a new, stable DNA structure in both mouse and human cells-one which differs from the standard Watson-and-Crick double helix and plays a critical role in the production of antibodies, or immunoglobulins.
The research will be published online in the journal Nature Immunology this week, and will appear in print in the journal’s May issue.

"The way in which the five different immunoglobulin classes are created is a nearly perfect system," notes Michael Lieber, M.D., Ph.D., professor of pathology and biochemistry and the study’s principal investigator. "And yet, the DNA mechanism for how a cell switches from producing one class to producing another has remained a mystery for almost 20 years."



The typical antibody molecule is shaped like the letter Y. The region at the end of each of the two short arms houses the receptors that recognize and bind with a specific foreign object, or antigen. These receptors are created via a well-described cutting-and-splicing mechanism that occurs within the nuclear DNA of B cells, which are key components of the immune system.

The long stem, or handle, of the Y determines to which immunoglobulin class an antibody belongs. It, too, is created via a B-cell nuclear cut-and-paste job, but the mechanics here are much more complicated-and until now, much less well understood.

An immunoglobulin’s class is important because it determines where in the body the antibody’s efforts will be concentrated. While immunoglobulin M (IgM) works mostly in the bloodstream, for instance, IgG can easily slip through a capillary’s walls and cross the placenta, and IgA can make itself at home in the lungs, the digestive tract and the body’s secretions (saliva, sweat, tears).

Although antibodies are needed in all areas of the body, they all begin life as IgM, explains Kefei Yu, Ph.D., the paper’s first author and a research associate at the USC/Norris Comprehensive Cancer Center. In order to go where they’re needed, the antibodies need to change their class-to go from being IgM to being IgG or IgA or IgE or IgD.

By undergoing this so-called class switch, Lieber explains, the body can send "the same antibody missile to different areas of the body."

The switch is made by cutting the DNA so that the code for IgM and any of the other class types that might precede the desired immunoglobulin class are abolished.

What Lieber, Yu and their colleagues have found is that, in order for such a cut to be made, the DNA that codes for the desired class must first form a stable, relatively permanent bond with the RNA strand that is transcribing it. Only when this aptly named R-loop is present can the DNA be cut and spliced to create an antibody of a different immunoglobulin class.

This is not the normal process by which DNA is cut. Usually, an enzyme cuts DNA based on a particular nucleotide sequence; the sequence acts as a signal to the enzyme, pointing to the precise place the cut is to be made. But in immunoglobulin class switching, Yu explains, there is no specific signaling sequence-instead, as the Keck School scientists proved in their paper, it is the mere physical presence of the R-loop that tells the enzymes where the cut is to be made. "The protein enzyme is not recognizing a sequence, but rather an altered DNA structure," Yu says.

This is also not the normal process by which DNA is transcribed. Generally, DNA being transcribed serves as a template for the creation of a protein or enzyme. The double-stranded DNA separates, and then an RNA strand begins to pair up with each individual DNA nucleotide on one of those strands, creating a sort of mirror image of the DNA; this is the transcript. During this process, only the leading edge of the RNA remains bonded to the DNA nucleotides it’s transcribing. The rest of the RNA strand hangs off like the tail of a kite; when the RNA reaches the end of the stretch of DNA to be transcribed, the entire RNA strand drops away from the DNA and leaves the nucleus.

Not so in immunoglobulin production, says Yu. For one thing the part of the DNA that’s transcribed during immunoglobulin class switching doesn’t actually produce anything-it’s called a silent transcript. And for another, the RNA strand remains firmly attached to each and every DNA nucleotide it touches-creating a sort of permanent RNA sandwich, with the RNA between two strands of DNA, though only attached to one of them. That’s the R-loop. And it is what makes immunoglobulin class switching remarkable and unique.

"The whole process is more sophisticated than we first thought," Yu remarks.

And it may also be more illuminating than they thought. According to Yu and Lieber, the discovery of the R-loop may shed light on the development of B-cell cancers like myelomas. "We believe something may be going wrong during this class-switching recombination event that activates an oncogene," says Yu. "That is not proven yet, but it is something we will be looking at in the laboratory."

Kefei Yu, Frederic Chedin, Chih-Lin Hsieh, Thomas E. Wilson, Michael R. Lieber, "R-loops at immunoglobulin class switching regions in the chromosomes of stimulated B cells." Nature Immunology, www.nature.com/natureimmunology.


Lori Oliwenstein | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>