Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify a Protein Channel that Mediates the Body’s Ability to Feel Frigid Temperatures

03.04.2003


Scientists Identify a Protein Channel that Mediates the Body’s Ability to Feel Frigid



A group of researchers from The Scripps Research Institute (TSRI) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified and isolated a novel protein that mediates the body’s ability to sense cold through the skin.

In an article that will appear in this week’s issue of the journal Cell, the group describes the "ion channel" protein, called ANKTM1, which is the first noxious (painful) cold receptor identified, and may be an important basic target for pain-modulating drugs.


Despite the fact that researchers at several other laboratories had previously identified receptors that sense hot temperatures, warm temperatures, and cool temperatures, the protein that detects cold temperatures had been conspicuously absent. "This was one of the remaining puzzles," says TSRI Assistant Professor of Cell Biology Ardem Patapoutian, who led the effort with TSRI Research Associate Gina Story.

The cold receptor protein ANKTM1 was overlooked, note Patapoutian and Story, because it is distantly related to the hot, warm, and cool receptors. As such, ANKTM1 has very low sequence homology, or DNA similarity, with these other proteins.

But when they studied it in the laboratory, Patatpoutian and Story found that even though ANKTM1 did not "look" like a temperature receptor, it sure acted like one. "We found that if we applied very cold stimuli, the channel would open in response," says Story.

Hot, Cold, and Everything In Between

Humans and other vertebrate animals use specialized sensory neurons to detect temperature, pressure, and other physical stimuli on the skin. These neurons are located in the spinal column and are connected to the skin and organs through long extensions known as axons.

On the surface of these axons are the protein channel molecules, like ANKTM1 and its cousins the hot, warm, and cool receptors, which span the axon’s membrane, connecting the inside with the outside. These receptors act like "molecular thermometers" by opening and closing according to the temperature. At a particular temperature, the receptors open. This allows an influx of calcium ions into the axon, and this electrical signal is relayed through the neuron to the brain.

The existence of specialized hot- and cold-neurons had been known for years, but the molecules that actually sense the temperatures and signal back to the neuron through the axon were a complete mystery. That changed in 1997 when a group cloned the first sensory molecule, a type of transient receptor potential (TRP) channel called TRPV1. TRPV1 opens when it senses hot temperatures—above 42 C (108 F). That discovery opened the floodgates for identifying temperature-detecting proteins. Within a few years, several laboratories had identified additional temperature-detecting proteins.

Last year, Patapoutian and his TSRI and GNF colleagues identified and cloned a protein called TRPM8, which is the first-known signaling molecule that helps the body sense cool temperatures. The channel becomes activated below 25 C (77 F). Similarly, the group also identified a type of TRP channel called "TRPV3" that makes skin cells able to sense warm temperatures. It is activated around 33 C (92 F).

How Low Can You Go?

In their current study, Patapoutian and Story demonstrate that the channel ANKTM1 is inactive at room temperature and higher, and only becomes active at "noxious" cold temperatures. Below 15 C (59 F), the channel opens and allows an influx of positively charged ions into the axon, an electrical signal which is then communicated to the brain.

Biochemically, ANKTM1 is a bit of a puzzle because proteins are normally more active at higher temperatures. Even more bizarre is the fact that these cold-sensing ANKTM1 proteins are coexpressed with their cousins, the hot-sensing TRPV1 proteins on the same neurons. This means that the same neuron may be responsible for detecting hot and cold temperatures.

Scientists had long assumed that different neurons would detect different stimuli and be responsible for communicating those separately to the brain. But if the same neurons detect hot and cold, how does the brain tell the two stimuli apart? The answer, while unclear, may explain an old psychologist’s observation that humans cannot tell the difference between a hot needlepoint and a cold needlepoint on their hand.

Significantly, ANKTM1’s neuronal neighbor TRPV1 is involved in inflammation and in communicating pain to the brain, and several compounds that block TRPV1’s action are currently under investigation for chronic pain indications. Since ANKTM1 is expressed in the same neurons, it, too, may be a target for pain therapeutics.

"This protein may be an important therapeutic target," says Patapoutian, "because, like these other TRP channels, it may be involved in inflammation and pain-mediation."

The research article "ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures" is authored by Gina M. Story, Andrea M. Peier, Alison J. Reeve, Samer R. Eid, Johannes Mosbacher, Todd R. Hricik, Taryn J. Earley, Anne C. Hergarden, David A. Andersson, Sun Wook Hwang, Peter McIntyre, Tim Jegla, Stuart Bevan, and Ardem Patapoutian and appeared in the March 21, 2003 issue of Cell.

The research was funded by the National Institutes of Health and by a grant to TSRI from Novartis.







--------------------------------------------------------------------------------
For more information contact:
Jason Bardi
10550 North Torrey Pines Road
La Jolla, California 92037

Tel: 858.784.9254
Fax: 858.784.8118
jasonb@scripps.edu

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/news/press/040203.html

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>