Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a handle on sensitive cycles

01.04.2003


EMBL researchers discover a mechanism by which cells monitor estrogen



The hormone estrogen is recognized by most people because of its important role in women’s reproductive cycles. It also has other functions in the body: it drives some types of cells to replicate themselves, and it has been linked to the development of tumors. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg have now described a new model of how cells constantly monitor their exposure to estrogen. This work, which appears in the current issue of Molecular Cell, provides new insights into the way estrogen influences the activity of genes. It also suggests new ways to prevent cancer cells from dividing.

Hormones serve as one of the body’s express messenger services; they are frequently used as a signal that tells cells to change their functions or patterns of growth. Estrogen is a small molecule that passes directly into cells; once inside, it latches onto proteins called estrogen receptors that dock onto DNA. As a result, genes are activated and new proteins are produced, changing the cell’s behavior.


The body reacts to both increases and decreases in amounts of estrogen; switching a gene off can be just as important as activating one. Recent experiments have given George Reid, Michael Hübner and Raphaël Métivier in Frank Gannon’s laboratory a new view of how genes can respond to changes in either direction.

Gannon’s team has focused on estrogen receptors since they are the main intermediaries between the estrogen hormone and genes. Their latest work reveals that receptors don’t stay docked onto DNA very long; they regularly get stripped off again and dismantled. New receptors arrive to take their place. This cycle is essential to the way estrogen functions.

"It takes a two-step process for estrogen to switch on a gene," Reid says. "The hormone binds to the receptor and activates it. This complex then docks onto DNA and turns on the gene. If there is no estrogen around, ’unloaded’ receptors still attach themselves to DNA, but the gene won’t be activated. Now suppose that a lot of estrogen arrives, and that gene needs to be activated. The inactive receptor needs to be moved out of the way so that an active one can take its place."

Cells need to be equally sensitive to decreases in the amount of estrogen. This means that genes which have been switched on need to be turned off again. The mechanism is similar: a receptor (in this case, the active form) has to be stripped off the DNA.

"The first thing we discovered was a connection between gene activity, estrogen receptors and the action of intracellular molecular machines called proteasomes, which dismantle proteins," Reid says. "Jan Ellenberg’s group helped us to watch how their behavior changed under different conditions. If proteosomes are active, a receptor can move around quickly, and this puts it into position to contact the genes that respond to it. Without proteasomes, estrogen receptors are immobilized. The cycle is broken: fresh receptors don’t get onto DNA."

Under normal circumstances, however, proteasomes are around to help. The receptors dock onto DNA, and then they need to be stripped off. The Gannon group showed that inactive receptors, after binding to DNA, become loaded with another molecule called ubiquitin, which marks them for destruction by proteasomes.

"With active receptors, the end result is the same, but the sequence of events is a bit different," Reid says. "The active receptor summons other molecules to read the information in the DNA and transcribe it into RNA. After accomplishing this, they, too, become loaded with ubiquitin. Again, this leads to their removal from the gene. What we now understand is that there’s a continuous, active process that strips both types of receptors - free and estrogen-bound – off the DNA, and this is an intrinsic part of how the cell continuously senses estrogen levels."

The constant removal of receptors from genes functions like a sort of security camera that takes a fresh picture of estrogen levels in the cell at regular intervals. It guarantees that the cell can respond to changes when they occur.

"It also shows that this sensing system is dependent on the behavior of other molecular components – ubiquitins, proteasomes and all the cellular systems that control them," Reid says. "That opens up new avenues for therapies in diseases that involve estrogen. We know that the estrogen system is delicate; it’s also important, because it influences how some cells differentiate and divide. These processes go wrong in certain cancers, typically in the breast and the lining of the uterus. Our findings suggest that you might be able to stop the proliferative effects of estrogen by interfering with these other processes."

Russ Hodge | EurekAlert!
Further information:
http://www.embl-heidelberg.de/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>