Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myosin V, The Molecular Motor, Moves in ’Monkey-Bar’ Motion

31.03.2003


Unique Hand-Over-Hand Rotation Transports Molecules Through Cells



Within every neuron is a vast protein trail system traversed by a small protein engine called Myosin V. The long-standing question of how this molecule moves may have finally been resolved by researchers from the University of Pennsylvania School of Medicine. Their findings, presented in this week’s issue of Nature, show how myosin V can move ’hand-over-hand’ on tracks, composed of a protein called actin, without completely letting go at any point. According to the researchers, myosin V offers a fascinating example of how cells convert chemical energy into motion, and may offer a natural example of molecular motors for the purposes of nanotechnology.

"There are a number of theories on how this molecule moves. What concerned me was how this little myosin motor can move along the track without letting go and floating off into the cytoplasm of the cell," said Yale E. Goldman, MD, PhD, professor in Penn’s Department of Physiology and director of the Pennsylvania Muscle Institute (PMI). "It turns out that myosin tilts as it steps along the actin track - one head attaches to the track and then the molecule rotates allowing the other head to attach - much like a child on a playground crosses the monkey-bars hand-over-hand."


Myosin V, which is also found in pigment cells, is a protein that consists of two heads attached to a long tail, which can bind to the motor’s molecular ’cargo.’ Myosin travels over long filaments of a protein called actin. This cytoskeletal network is a feature of all multicellular creatures, and it is used to transport molecules throughout a single cell. In humans, Griscelli disease, which is characterized by neurological deficits and a lack of pigment, stems from non-functioning myosin V.

Goldman and his colleagues were able to study the hand-over-hand motion of a single myosin motor in action thanks to an innovative microscopic technique created by Joseph N. Forkey, PhD, a post-doctoral researcher at Goldman’s PMI laboratory. The technique, called single-molecule fluorescence polarization, involved labeling myosin V with a fluorescent tag. The researchers then used a laser beam to hit the tag, creating an electromagnetic field that could resolve the angle at which the molecule tilts.

"Using single-molecule fluorescence polarization, we could detect the three-dimensional orientation of myosin V tilting back and forth between two well-defined angles as it teetered along," said Goldman.

Researchers contributing to this work include Margot E. Quinlan and M. Alexander Shaw of PMI and John E. T. Corrie of the National Institute for Medical Research in London, UK.

This research was supported by grants from the National Institutes of Health and the Medical Research Council.

Greg Lester | University of Pennsylvania Medic
Further information:
http://health.upenn.edu/News/News_Releases/mar03/myosinv.html
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>