Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myosin V, The Molecular Motor, Moves in ’Monkey-Bar’ Motion

31.03.2003


Unique Hand-Over-Hand Rotation Transports Molecules Through Cells



Within every neuron is a vast protein trail system traversed by a small protein engine called Myosin V. The long-standing question of how this molecule moves may have finally been resolved by researchers from the University of Pennsylvania School of Medicine. Their findings, presented in this week’s issue of Nature, show how myosin V can move ’hand-over-hand’ on tracks, composed of a protein called actin, without completely letting go at any point. According to the researchers, myosin V offers a fascinating example of how cells convert chemical energy into motion, and may offer a natural example of molecular motors for the purposes of nanotechnology.

"There are a number of theories on how this molecule moves. What concerned me was how this little myosin motor can move along the track without letting go and floating off into the cytoplasm of the cell," said Yale E. Goldman, MD, PhD, professor in Penn’s Department of Physiology and director of the Pennsylvania Muscle Institute (PMI). "It turns out that myosin tilts as it steps along the actin track - one head attaches to the track and then the molecule rotates allowing the other head to attach - much like a child on a playground crosses the monkey-bars hand-over-hand."


Myosin V, which is also found in pigment cells, is a protein that consists of two heads attached to a long tail, which can bind to the motor’s molecular ’cargo.’ Myosin travels over long filaments of a protein called actin. This cytoskeletal network is a feature of all multicellular creatures, and it is used to transport molecules throughout a single cell. In humans, Griscelli disease, which is characterized by neurological deficits and a lack of pigment, stems from non-functioning myosin V.

Goldman and his colleagues were able to study the hand-over-hand motion of a single myosin motor in action thanks to an innovative microscopic technique created by Joseph N. Forkey, PhD, a post-doctoral researcher at Goldman’s PMI laboratory. The technique, called single-molecule fluorescence polarization, involved labeling myosin V with a fluorescent tag. The researchers then used a laser beam to hit the tag, creating an electromagnetic field that could resolve the angle at which the molecule tilts.

"Using single-molecule fluorescence polarization, we could detect the three-dimensional orientation of myosin V tilting back and forth between two well-defined angles as it teetered along," said Goldman.

Researchers contributing to this work include Margot E. Quinlan and M. Alexander Shaw of PMI and John E. T. Corrie of the National Institute for Medical Research in London, UK.

This research was supported by grants from the National Institutes of Health and the Medical Research Council.

Greg Lester | University of Pennsylvania Medic
Further information:
http://health.upenn.edu/News/News_Releases/mar03/myosinv.html
http://www.med.upenn.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>