Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle and thread molecules connecting materials in new ways

27.03.2003


Determining details of attraction in mechanically-linked molecules allows chemists to fine-tune shapes, capabilities of supramolecules for improved and new polymers

Virginia Tech chemistry professor H.W. Gibson and his students have been able to take advantage of self assembly to create new chemical structures from mechanically-linked molecules. Gibson will give an invited talk in the Division of Polymer Chemistry at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans.

The field of mechanically-linked chemistry uses a limited set of compounds as building blocks for supramolecules. Starting with crown ethers, which are rings (the ’hosts’), and rod-shaped molecules such as ammonium ions (the ’guests’), the chemists thread the rings with the rods to create molecules called pseudorotaxanes. Bulky groups are then added to the ends of the rods so they won’t unthread and these molecules are rotaxanes.



The attractive forces between the rings and rods is what allows them to self-assemble into pseudorotaxanes. "It’s an equilibrium process," says Gibson.

The researchers in Gibson’s lab studied these complexes using x-ray crystallography to understand the forces that hold the different compounds together. "The x-rays gave us the exact angles and distances, allowing us to determine the attractive forces," says Gibson.

Now the researchers are putting those molecular entities at the end of polymer chains, like spaghetti strands with selective host and guest species at the ends that will only complex with each other. "It’s like a needle and thread, but only a certain thread will pass through the eye of the needle," says Gibson. What also makes the new molecule interesting is that it is held together by a noncovalent bond, meaning it can be reversed.

"We are trying to create materials at low temperatures that have the properties of block copolymers," says Gibson. "If heated, they will loosen and come apart. Such materials are easier to process. Heat causes them to revert to smaller molecules, so the material has lower viscosity. It would take less pressure to force them into a mold and you could create very thin molds."

Compare that to a thermosetting polymer that must be heated to 200 degrees C to be processed. "If there is a problem, you have to throw it away because it is not soluble or meltable. The thread and needle material could simply be reprocessed because the molecules would separate at the noncovalent bond into the smaller units, then could be allowed to reform into the specific supramolecular thread and needle."

Joining chain polymers using pseudorotaxanes could also make it possible to tailor the materials joined in block copolymers to improve mechanical or other behavior. For instance, by selection of one of a series with host species at the chain ends (from column A) and one from a series of polymers with guest species at chain ends (from column B) a range of block copolymers could be assembled and tested very readily. These systems would be analogs of traditional covalent block copolymers such as impact resistant styrene-butadiene systems.

Gibson’s group has also connected up to 12 crown ethers to C60 fullerene (60 carbon atom buckeyball) and separately up to 12 guest species. These octopus-like 12-armed species can interact with the end-functionalized polymers described above to encapsulate the buckeyeball, thus isolating the fullerene core for various applications, such as catalysis and enhanced solubility.

Gibson will deliver the paper, " Self-assembly with molecular buildings blocks (Poly 611)," co-authored by Zhongzin Ge, Jason W. Jones, and Aurica Farcas, at 9:45 a.m., Wednesday, March 26 in the Hilton Riverside Grand Salon C18/C15.

Jones and Feihe Huang, Gibson’s Ph.D. students, will also deliver papers in the Organic Chemistry Division on related research results.
See separate news releases.


Contact for more information: Dr. Harry Gibson, hwgibson@vt.edu, 540-231-5902
PR CONTACT: Susan Trulove 540-231-5646 strulove@vt.edu

Harry Gibson | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>