Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Needle and thread molecules connecting materials in new ways


Determining details of attraction in mechanically-linked molecules allows chemists to fine-tune shapes, capabilities of supramolecules for improved and new polymers

Virginia Tech chemistry professor H.W. Gibson and his students have been able to take advantage of self assembly to create new chemical structures from mechanically-linked molecules. Gibson will give an invited talk in the Division of Polymer Chemistry at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans.

The field of mechanically-linked chemistry uses a limited set of compounds as building blocks for supramolecules. Starting with crown ethers, which are rings (the ’hosts’), and rod-shaped molecules such as ammonium ions (the ’guests’), the chemists thread the rings with the rods to create molecules called pseudorotaxanes. Bulky groups are then added to the ends of the rods so they won’t unthread and these molecules are rotaxanes.

The attractive forces between the rings and rods is what allows them to self-assemble into pseudorotaxanes. "It’s an equilibrium process," says Gibson.

The researchers in Gibson’s lab studied these complexes using x-ray crystallography to understand the forces that hold the different compounds together. "The x-rays gave us the exact angles and distances, allowing us to determine the attractive forces," says Gibson.

Now the researchers are putting those molecular entities at the end of polymer chains, like spaghetti strands with selective host and guest species at the ends that will only complex with each other. "It’s like a needle and thread, but only a certain thread will pass through the eye of the needle," says Gibson. What also makes the new molecule interesting is that it is held together by a noncovalent bond, meaning it can be reversed.

"We are trying to create materials at low temperatures that have the properties of block copolymers," says Gibson. "If heated, they will loosen and come apart. Such materials are easier to process. Heat causes them to revert to smaller molecules, so the material has lower viscosity. It would take less pressure to force them into a mold and you could create very thin molds."

Compare that to a thermosetting polymer that must be heated to 200 degrees C to be processed. "If there is a problem, you have to throw it away because it is not soluble or meltable. The thread and needle material could simply be reprocessed because the molecules would separate at the noncovalent bond into the smaller units, then could be allowed to reform into the specific supramolecular thread and needle."

Joining chain polymers using pseudorotaxanes could also make it possible to tailor the materials joined in block copolymers to improve mechanical or other behavior. For instance, by selection of one of a series with host species at the chain ends (from column A) and one from a series of polymers with guest species at chain ends (from column B) a range of block copolymers could be assembled and tested very readily. These systems would be analogs of traditional covalent block copolymers such as impact resistant styrene-butadiene systems.

Gibson’s group has also connected up to 12 crown ethers to C60 fullerene (60 carbon atom buckeyball) and separately up to 12 guest species. These octopus-like 12-armed species can interact with the end-functionalized polymers described above to encapsulate the buckeyeball, thus isolating the fullerene core for various applications, such as catalysis and enhanced solubility.

Gibson will deliver the paper, " Self-assembly with molecular buildings blocks (Poly 611)," co-authored by Zhongzin Ge, Jason W. Jones, and Aurica Farcas, at 9:45 a.m., Wednesday, March 26 in the Hilton Riverside Grand Salon C18/C15.

Jones and Feihe Huang, Gibson’s Ph.D. students, will also deliver papers in the Organic Chemistry Division on related research results.
See separate news releases.

Contact for more information: Dr. Harry Gibson,, 540-231-5902
PR CONTACT: Susan Trulove 540-231-5646

Harry Gibson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>