Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle and thread molecules connecting materials in new ways

27.03.2003


Determining details of attraction in mechanically-linked molecules allows chemists to fine-tune shapes, capabilities of supramolecules for improved and new polymers

Virginia Tech chemistry professor H.W. Gibson and his students have been able to take advantage of self assembly to create new chemical structures from mechanically-linked molecules. Gibson will give an invited talk in the Division of Polymer Chemistry at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans.

The field of mechanically-linked chemistry uses a limited set of compounds as building blocks for supramolecules. Starting with crown ethers, which are rings (the ’hosts’), and rod-shaped molecules such as ammonium ions (the ’guests’), the chemists thread the rings with the rods to create molecules called pseudorotaxanes. Bulky groups are then added to the ends of the rods so they won’t unthread and these molecules are rotaxanes.



The attractive forces between the rings and rods is what allows them to self-assemble into pseudorotaxanes. "It’s an equilibrium process," says Gibson.

The researchers in Gibson’s lab studied these complexes using x-ray crystallography to understand the forces that hold the different compounds together. "The x-rays gave us the exact angles and distances, allowing us to determine the attractive forces," says Gibson.

Now the researchers are putting those molecular entities at the end of polymer chains, like spaghetti strands with selective host and guest species at the ends that will only complex with each other. "It’s like a needle and thread, but only a certain thread will pass through the eye of the needle," says Gibson. What also makes the new molecule interesting is that it is held together by a noncovalent bond, meaning it can be reversed.

"We are trying to create materials at low temperatures that have the properties of block copolymers," says Gibson. "If heated, they will loosen and come apart. Such materials are easier to process. Heat causes them to revert to smaller molecules, so the material has lower viscosity. It would take less pressure to force them into a mold and you could create very thin molds."

Compare that to a thermosetting polymer that must be heated to 200 degrees C to be processed. "If there is a problem, you have to throw it away because it is not soluble or meltable. The thread and needle material could simply be reprocessed because the molecules would separate at the noncovalent bond into the smaller units, then could be allowed to reform into the specific supramolecular thread and needle."

Joining chain polymers using pseudorotaxanes could also make it possible to tailor the materials joined in block copolymers to improve mechanical or other behavior. For instance, by selection of one of a series with host species at the chain ends (from column A) and one from a series of polymers with guest species at chain ends (from column B) a range of block copolymers could be assembled and tested very readily. These systems would be analogs of traditional covalent block copolymers such as impact resistant styrene-butadiene systems.

Gibson’s group has also connected up to 12 crown ethers to C60 fullerene (60 carbon atom buckeyball) and separately up to 12 guest species. These octopus-like 12-armed species can interact with the end-functionalized polymers described above to encapsulate the buckeyeball, thus isolating the fullerene core for various applications, such as catalysis and enhanced solubility.

Gibson will deliver the paper, " Self-assembly with molecular buildings blocks (Poly 611)," co-authored by Zhongzin Ge, Jason W. Jones, and Aurica Farcas, at 9:45 a.m., Wednesday, March 26 in the Hilton Riverside Grand Salon C18/C15.

Jones and Feihe Huang, Gibson’s Ph.D. students, will also deliver papers in the Organic Chemistry Division on related research results.
See separate news releases.


Contact for more information: Dr. Harry Gibson, hwgibson@vt.edu, 540-231-5902
PR CONTACT: Susan Trulove 540-231-5646 strulove@vt.edu

Harry Gibson | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>