Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle and thread molecules connecting materials in new ways

27.03.2003


Determining details of attraction in mechanically-linked molecules allows chemists to fine-tune shapes, capabilities of supramolecules for improved and new polymers

Virginia Tech chemistry professor H.W. Gibson and his students have been able to take advantage of self assembly to create new chemical structures from mechanically-linked molecules. Gibson will give an invited talk in the Division of Polymer Chemistry at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans.

The field of mechanically-linked chemistry uses a limited set of compounds as building blocks for supramolecules. Starting with crown ethers, which are rings (the ’hosts’), and rod-shaped molecules such as ammonium ions (the ’guests’), the chemists thread the rings with the rods to create molecules called pseudorotaxanes. Bulky groups are then added to the ends of the rods so they won’t unthread and these molecules are rotaxanes.



The attractive forces between the rings and rods is what allows them to self-assemble into pseudorotaxanes. "It’s an equilibrium process," says Gibson.

The researchers in Gibson’s lab studied these complexes using x-ray crystallography to understand the forces that hold the different compounds together. "The x-rays gave us the exact angles and distances, allowing us to determine the attractive forces," says Gibson.

Now the researchers are putting those molecular entities at the end of polymer chains, like spaghetti strands with selective host and guest species at the ends that will only complex with each other. "It’s like a needle and thread, but only a certain thread will pass through the eye of the needle," says Gibson. What also makes the new molecule interesting is that it is held together by a noncovalent bond, meaning it can be reversed.

"We are trying to create materials at low temperatures that have the properties of block copolymers," says Gibson. "If heated, they will loosen and come apart. Such materials are easier to process. Heat causes them to revert to smaller molecules, so the material has lower viscosity. It would take less pressure to force them into a mold and you could create very thin molds."

Compare that to a thermosetting polymer that must be heated to 200 degrees C to be processed. "If there is a problem, you have to throw it away because it is not soluble or meltable. The thread and needle material could simply be reprocessed because the molecules would separate at the noncovalent bond into the smaller units, then could be allowed to reform into the specific supramolecular thread and needle."

Joining chain polymers using pseudorotaxanes could also make it possible to tailor the materials joined in block copolymers to improve mechanical or other behavior. For instance, by selection of one of a series with host species at the chain ends (from column A) and one from a series of polymers with guest species at chain ends (from column B) a range of block copolymers could be assembled and tested very readily. These systems would be analogs of traditional covalent block copolymers such as impact resistant styrene-butadiene systems.

Gibson’s group has also connected up to 12 crown ethers to C60 fullerene (60 carbon atom buckeyball) and separately up to 12 guest species. These octopus-like 12-armed species can interact with the end-functionalized polymers described above to encapsulate the buckeyeball, thus isolating the fullerene core for various applications, such as catalysis and enhanced solubility.

Gibson will deliver the paper, " Self-assembly with molecular buildings blocks (Poly 611)," co-authored by Zhongzin Ge, Jason W. Jones, and Aurica Farcas, at 9:45 a.m., Wednesday, March 26 in the Hilton Riverside Grand Salon C18/C15.

Jones and Feihe Huang, Gibson’s Ph.D. students, will also deliver papers in the Organic Chemistry Division on related research results.
See separate news releases.


Contact for more information: Dr. Harry Gibson, hwgibson@vt.edu, 540-231-5902
PR CONTACT: Susan Trulove 540-231-5646 strulove@vt.edu

Harry Gibson | EurekAlert!
Further information:
http://www.technews.vt.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>