Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers decipher structure, activity of enzyme key to biochemical pathways of life

27.03.2003


Finding how E1 enzyme juggles three jobs should lead to critical insights into the control of cellular functions at the heart of health and disease



Scientists at St. Jude Children’s Research Hospital have discovered how a single enzyme called E1 performs a rapid-fire, three-part chemical makeover of a protein that helps control some of the most fundamental biochemical processes of the human cell. The enzyme uses two different parts of its own structure to juggle four different molecules as it completes three different reactions.

This rare ability of a single enzyme to carry out three different chemical reactions by itself is at the heart of the role E1 plays in modifying NEDD8, which is part of a family of proteins called ubiquitin-like proteins. E1 proteins are a family of molecules called activating enzymes.


These enzymes coordinate the activity of different ubiquitin-like proteins.

The cell uses ubiquitin-like proteins such as NEDD8 to trigger special molecules that act as on switches for a variety of biochemical pathways, according to Brenda Schulman, Ph.D., an assistant member of the St. Jude Departments of Structural Biology, Genetics and Tumor Cell Biology.

The pathways switched on by ubiquitin-like proteins include vital activities, such as immune responses and cell division, she said. Schulman is the senior author of a report appearing in the March 20 issue of Nature on the structure and function of the E1 activating enzyme for NEDD8.

"The cell uses E1 activating enzymes to keep a tight rein on all of the various biochemical pathways it must activate," Schulman said. "Otherwise the cell would be chaotic and wouldn’t be able to perform the tasks it is supposed to do in the body."

Each type of E1 activating enzyme coordinates a specific function to make sure it occurs at precisely the right time, she says.

The complex series of reactions that control each function begins when a specific E1 activating enzyme combines an ubiquitin-like protein such as NEDD8 to an "escort" molecule.

The escort brings the ubiquitin-like protein to its pre-assigned target molecule. When the ubiquitin-like protein chemically modifies this molecule, the molecule triggers a specific cellular activity, such as cell division.

The discovery of the structure of the E1 activating enzyme for NEDD8 helps explain the critical steps by which E1 links NEDD8 to its E2 escort.

"Now that we know exactly what the E1 for NEDD8 looks like and how it works, we can start to understand how the cell controls its extraordinarily complex command and control systems," Schulman said. "We’ll start to understand how the cell gets through the day doing its jobs and keeping us healthy--or making us ill when its command and control systems get disrupted."

For example, the influenza virus hijacks one of the ubiquitin-like proteins so it does not undergo its normal activation by an E1 enzyme.

This hijacking helps the virus hide from the surveillance system set up by the immune system to track infections.

"The more we learn about how these pathways are controlled, the more likely we’ll understand how to fix them when they get disrupted and cause a wide variety of diseases," Schulman said.

Schulman and her colleagues obtained the information that let them create a picture of the E1 structure using a technique called X-ray crystallography. In this technique, the proteins are first crystallized to immobilize them, and then X-rays are directed at the protein crystal.

The pattern formed by the x-rays as they bounce off the protein crystal is then translated into a picture of the molecule.

Other authors of the paper include Helen Walden, Ph.D. and Michael S. Podgorski, both of St. Jude.


The work was supported by ALSAC, the National Cancer Institute Cancer Center (CORE) and a Pew Scholar in Biomedical Science Award to ’Schulman.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit http://.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>