Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers decipher structure, activity of enzyme key to biochemical pathways of life

27.03.2003


Finding how E1 enzyme juggles three jobs should lead to critical insights into the control of cellular functions at the heart of health and disease



Scientists at St. Jude Children’s Research Hospital have discovered how a single enzyme called E1 performs a rapid-fire, three-part chemical makeover of a protein that helps control some of the most fundamental biochemical processes of the human cell. The enzyme uses two different parts of its own structure to juggle four different molecules as it completes three different reactions.

This rare ability of a single enzyme to carry out three different chemical reactions by itself is at the heart of the role E1 plays in modifying NEDD8, which is part of a family of proteins called ubiquitin-like proteins. E1 proteins are a family of molecules called activating enzymes.


These enzymes coordinate the activity of different ubiquitin-like proteins.

The cell uses ubiquitin-like proteins such as NEDD8 to trigger special molecules that act as on switches for a variety of biochemical pathways, according to Brenda Schulman, Ph.D., an assistant member of the St. Jude Departments of Structural Biology, Genetics and Tumor Cell Biology.

The pathways switched on by ubiquitin-like proteins include vital activities, such as immune responses and cell division, she said. Schulman is the senior author of a report appearing in the March 20 issue of Nature on the structure and function of the E1 activating enzyme for NEDD8.

"The cell uses E1 activating enzymes to keep a tight rein on all of the various biochemical pathways it must activate," Schulman said. "Otherwise the cell would be chaotic and wouldn’t be able to perform the tasks it is supposed to do in the body."

Each type of E1 activating enzyme coordinates a specific function to make sure it occurs at precisely the right time, she says.

The complex series of reactions that control each function begins when a specific E1 activating enzyme combines an ubiquitin-like protein such as NEDD8 to an "escort" molecule.

The escort brings the ubiquitin-like protein to its pre-assigned target molecule. When the ubiquitin-like protein chemically modifies this molecule, the molecule triggers a specific cellular activity, such as cell division.

The discovery of the structure of the E1 activating enzyme for NEDD8 helps explain the critical steps by which E1 links NEDD8 to its E2 escort.

"Now that we know exactly what the E1 for NEDD8 looks like and how it works, we can start to understand how the cell controls its extraordinarily complex command and control systems," Schulman said. "We’ll start to understand how the cell gets through the day doing its jobs and keeping us healthy--or making us ill when its command and control systems get disrupted."

For example, the influenza virus hijacks one of the ubiquitin-like proteins so it does not undergo its normal activation by an E1 enzyme.

This hijacking helps the virus hide from the surveillance system set up by the immune system to track infections.

"The more we learn about how these pathways are controlled, the more likely we’ll understand how to fix them when they get disrupted and cause a wide variety of diseases," Schulman said.

Schulman and her colleagues obtained the information that let them create a picture of the E1 structure using a technique called X-ray crystallography. In this technique, the proteins are first crystallized to immobilize them, and then X-rays are directed at the protein crystal.

The pattern formed by the x-rays as they bounce off the protein crystal is then translated into a picture of the molecule.

Other authors of the paper include Helen Walden, Ph.D. and Michael S. Podgorski, both of St. Jude.


The work was supported by ALSAC, the National Cancer Institute Cancer Center (CORE) and a Pew Scholar in Biomedical Science Award to ’Schulman.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit http://.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>