Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers decipher structure, activity of enzyme key to biochemical pathways of life

27.03.2003


Finding how E1 enzyme juggles three jobs should lead to critical insights into the control of cellular functions at the heart of health and disease



Scientists at St. Jude Children’s Research Hospital have discovered how a single enzyme called E1 performs a rapid-fire, three-part chemical makeover of a protein that helps control some of the most fundamental biochemical processes of the human cell. The enzyme uses two different parts of its own structure to juggle four different molecules as it completes three different reactions.

This rare ability of a single enzyme to carry out three different chemical reactions by itself is at the heart of the role E1 plays in modifying NEDD8, which is part of a family of proteins called ubiquitin-like proteins. E1 proteins are a family of molecules called activating enzymes.


These enzymes coordinate the activity of different ubiquitin-like proteins.

The cell uses ubiquitin-like proteins such as NEDD8 to trigger special molecules that act as on switches for a variety of biochemical pathways, according to Brenda Schulman, Ph.D., an assistant member of the St. Jude Departments of Structural Biology, Genetics and Tumor Cell Biology.

The pathways switched on by ubiquitin-like proteins include vital activities, such as immune responses and cell division, she said. Schulman is the senior author of a report appearing in the March 20 issue of Nature on the structure and function of the E1 activating enzyme for NEDD8.

"The cell uses E1 activating enzymes to keep a tight rein on all of the various biochemical pathways it must activate," Schulman said. "Otherwise the cell would be chaotic and wouldn’t be able to perform the tasks it is supposed to do in the body."

Each type of E1 activating enzyme coordinates a specific function to make sure it occurs at precisely the right time, she says.

The complex series of reactions that control each function begins when a specific E1 activating enzyme combines an ubiquitin-like protein such as NEDD8 to an "escort" molecule.

The escort brings the ubiquitin-like protein to its pre-assigned target molecule. When the ubiquitin-like protein chemically modifies this molecule, the molecule triggers a specific cellular activity, such as cell division.

The discovery of the structure of the E1 activating enzyme for NEDD8 helps explain the critical steps by which E1 links NEDD8 to its E2 escort.

"Now that we know exactly what the E1 for NEDD8 looks like and how it works, we can start to understand how the cell controls its extraordinarily complex command and control systems," Schulman said. "We’ll start to understand how the cell gets through the day doing its jobs and keeping us healthy--or making us ill when its command and control systems get disrupted."

For example, the influenza virus hijacks one of the ubiquitin-like proteins so it does not undergo its normal activation by an E1 enzyme.

This hijacking helps the virus hide from the surveillance system set up by the immune system to track infections.

"The more we learn about how these pathways are controlled, the more likely we’ll understand how to fix them when they get disrupted and cause a wide variety of diseases," Schulman said.

Schulman and her colleagues obtained the information that let them create a picture of the E1 structure using a technique called X-ray crystallography. In this technique, the proteins are first crystallized to immobilize them, and then X-rays are directed at the protein crystal.

The pattern formed by the x-rays as they bounce off the protein crystal is then translated into a picture of the molecule.

Other authors of the paper include Helen Walden, Ph.D. and Michael S. Podgorski, both of St. Jude.


The work was supported by ALSAC, the National Cancer Institute Cancer Center (CORE) and a Pew Scholar in Biomedical Science Award to ’Schulman.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit http://.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>