Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting buds are dicing with death

27.03.2003


Scientists from the John Innes Centre (JIC), Norwich (1) have today reported that highly toxic compounds, called free radicals, are essential to plant growth. The researchers had found that the controlled production of free radicals is an essential first step in switching on the expansion of cells that underlies the growth of plant shoots, roots, leaves and buds. A phenomenon that is especially evident in the spring. The research is reported in the international scientific journal Nature.



"This is a completely novel discovery" said Dr Liam Dolan (leader of the research project at JIC). "For the first time we have strong evidence that all cell growth is controlled by the production of these highly reactive and therefore very toxic free radicals. At this time of year plants are juggling with a life and death balance as cells in sprouting seedlings and opening buds make high levels of these molecules in order to drive the expansion of new leaves, roots and shoots".

The research team have identified a gene (RHD2) that makes a protein, which produces free radicals(2). They have demonstrated that controlled production of free radicals by RHD2 stimulates calcium channels in the membranes of cells resulting in calcium being taken up by the cells. The accumulation of calcium in turn activates cell expansion. The scientists measured cell growth in roots and root hairs of Arabidopsis thaliana(3). In plants where the RHD2 gene was inactivated by a mutation the roots and root hairs were stunted. The multidisciplinary team used sophisticated microscopy to reveal the effect of RHD2 on free radical production and calcium movement into cells.


Free radicals have a two-edged role in biology.
They are produced by many living systems as a by-product of normal metabolism. In humans they are known to cause cancer by damaging DNA (the genetic material) but they also have an important role in the immune system where they are used to kill viruses and bacteria invading the body. This report describes a similar two-edged role in plants for these powerful toxins that play an essential role in plant growth.

"RHD2 is one of a large family of genes involved in free radical production. Variation in the activities of different genes in the family could cause differences in plant height and leaf size, in fact anything affected by cell expansion", concludes Dr Dolan. "It may be possible to screen plants for differences in the RHD2 gene family and match this to differences in their appearance. This would give us new information about how the shape and size of plants is controlled and how breeders might alter these characteristics in precise ways".

Ray Mathias | alfa

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>