Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting buds are dicing with death

27.03.2003


Scientists from the John Innes Centre (JIC), Norwich (1) have today reported that highly toxic compounds, called free radicals, are essential to plant growth. The researchers had found that the controlled production of free radicals is an essential first step in switching on the expansion of cells that underlies the growth of plant shoots, roots, leaves and buds. A phenomenon that is especially evident in the spring. The research is reported in the international scientific journal Nature.



"This is a completely novel discovery" said Dr Liam Dolan (leader of the research project at JIC). "For the first time we have strong evidence that all cell growth is controlled by the production of these highly reactive and therefore very toxic free radicals. At this time of year plants are juggling with a life and death balance as cells in sprouting seedlings and opening buds make high levels of these molecules in order to drive the expansion of new leaves, roots and shoots".

The research team have identified a gene (RHD2) that makes a protein, which produces free radicals(2). They have demonstrated that controlled production of free radicals by RHD2 stimulates calcium channels in the membranes of cells resulting in calcium being taken up by the cells. The accumulation of calcium in turn activates cell expansion. The scientists measured cell growth in roots and root hairs of Arabidopsis thaliana(3). In plants where the RHD2 gene was inactivated by a mutation the roots and root hairs were stunted. The multidisciplinary team used sophisticated microscopy to reveal the effect of RHD2 on free radical production and calcium movement into cells.


Free radicals have a two-edged role in biology.
They are produced by many living systems as a by-product of normal metabolism. In humans they are known to cause cancer by damaging DNA (the genetic material) but they also have an important role in the immune system where they are used to kill viruses and bacteria invading the body. This report describes a similar two-edged role in plants for these powerful toxins that play an essential role in plant growth.

"RHD2 is one of a large family of genes involved in free radical production. Variation in the activities of different genes in the family could cause differences in plant height and leaf size, in fact anything affected by cell expansion", concludes Dr Dolan. "It may be possible to screen plants for differences in the RHD2 gene family and match this to differences in their appearance. This would give us new information about how the shape and size of plants is controlled and how breeders might alter these characteristics in precise ways".

Ray Mathias | alfa

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>