Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting buds are dicing with death

27.03.2003


Scientists from the John Innes Centre (JIC), Norwich (1) have today reported that highly toxic compounds, called free radicals, are essential to plant growth. The researchers had found that the controlled production of free radicals is an essential first step in switching on the expansion of cells that underlies the growth of plant shoots, roots, leaves and buds. A phenomenon that is especially evident in the spring. The research is reported in the international scientific journal Nature.



"This is a completely novel discovery" said Dr Liam Dolan (leader of the research project at JIC). "For the first time we have strong evidence that all cell growth is controlled by the production of these highly reactive and therefore very toxic free radicals. At this time of year plants are juggling with a life and death balance as cells in sprouting seedlings and opening buds make high levels of these molecules in order to drive the expansion of new leaves, roots and shoots".

The research team have identified a gene (RHD2) that makes a protein, which produces free radicals(2). They have demonstrated that controlled production of free radicals by RHD2 stimulates calcium channels in the membranes of cells resulting in calcium being taken up by the cells. The accumulation of calcium in turn activates cell expansion. The scientists measured cell growth in roots and root hairs of Arabidopsis thaliana(3). In plants where the RHD2 gene was inactivated by a mutation the roots and root hairs were stunted. The multidisciplinary team used sophisticated microscopy to reveal the effect of RHD2 on free radical production and calcium movement into cells.


Free radicals have a two-edged role in biology.
They are produced by many living systems as a by-product of normal metabolism. In humans they are known to cause cancer by damaging DNA (the genetic material) but they also have an important role in the immune system where they are used to kill viruses and bacteria invading the body. This report describes a similar two-edged role in plants for these powerful toxins that play an essential role in plant growth.

"RHD2 is one of a large family of genes involved in free radical production. Variation in the activities of different genes in the family could cause differences in plant height and leaf size, in fact anything affected by cell expansion", concludes Dr Dolan. "It may be possible to screen plants for differences in the RHD2 gene family and match this to differences in their appearance. This would give us new information about how the shape and size of plants is controlled and how breeders might alter these characteristics in precise ways".

Ray Mathias | alfa

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>