Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A closer look yields new clues to why bacteria stick to things

26.03.2003


A bacterium’s ability to change its hairstyle may help in the effort to clean contaminated groundwater for drinking, according to Penn State researchers.



People are continually moving into places that are hot, sunny and arid where drinking water is in short supply, says R. Kramer Campen, Penn State graduate student in geosciences. "The imperative to find ways to clean groundwater is paramount," he told attendees today (March 25) at the 225th American Chemical Society national meeting in New Orleans.

In the ocean, bacteria can be released into the water to clean up oil spills, carried to the target by the same currents that transport the oil. Groundwater poses a more difficult problem as these single-cell organisms tend to adhere to certain minerals in the soil preventing them from following the pollutant’s trail. Bacterial adhesion is also responsible for many medical problems such as tooth decay and artificial limb and organ rejection. "There is a growing awareness that you need a molecular level understanding," says Campen. "At that level, the processes that cause a bacterium to adhere to a mineral in soil or to a tooth have to be the same."


For many years, scientists have noted that bacteria stick to iron particles in soil, but not to sand grains. Until recently, this has been explained by invoking the same forces that hold a balloon to the ceiling after you rub it on your sweater. Researchers thought that the tiny, negative electrical charges on sand grains repelled the negatively charged bacteria, while the positively charged iron attracted them.

However, Campen and his adviser, James Kubicki, assistant professor of geosciences, think it is all about the hair. Bacteria are covered with atomic-scale chains of complex sugar molecules with "one end fastened into the cell membrane and the rest extending outward," explains Campen. "The hair analogy is a good one."

The hairs, actually polymers, present a problem for the charge-based explanation because the strength of the attraction (or repulsion) depends on how close the objects are to each other. Because the charges are so small, at a distance of one hair-length no attraction should be felt.

Electrical charges may still be important, just not for the reasons previously thought. Polymers come in two varieties – one with no charge and another with positive and negative charges distributed along its length. A single bacterium has both, and the aggregate is known as a polymer brush.

Campen put polymers similar to those on bacteria, both charged and uncharged, into a liquid solution with iron and sand-like particles. He discovered that both adhered to the iron, challenging the idea that electrical forces are the cause of stickiness.

The charged hairs may have another purpose. "If you’re a bacterium in a nutrient-rich environment you’d like to stick around for while," says Campen. "If you’re in a nutrient-poor environment you’d rather decrease the chances that you’ll stick to surfaces."

To accomplish this, he thinks the bacterium may rearrange the positive and negative charges along its charged polymers in such a way that they would extend, allowing the whole brush to expand, contact surfaces, and become stuck. Or, in a different arrangement the charged hairs would scrunch up, flattening the brush and allowing the bacterium to be carried away.

Developing a method to control this behavior would provide scientists with the means to send bacteria where needed, or prevent them from accumulating where they can do harm.



The National Science Foundation provided funding for this project.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>