Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A closer look yields new clues to why bacteria stick to things

26.03.2003


A bacterium’s ability to change its hairstyle may help in the effort to clean contaminated groundwater for drinking, according to Penn State researchers.



People are continually moving into places that are hot, sunny and arid where drinking water is in short supply, says R. Kramer Campen, Penn State graduate student in geosciences. "The imperative to find ways to clean groundwater is paramount," he told attendees today (March 25) at the 225th American Chemical Society national meeting in New Orleans.

In the ocean, bacteria can be released into the water to clean up oil spills, carried to the target by the same currents that transport the oil. Groundwater poses a more difficult problem as these single-cell organisms tend to adhere to certain minerals in the soil preventing them from following the pollutant’s trail. Bacterial adhesion is also responsible for many medical problems such as tooth decay and artificial limb and organ rejection. "There is a growing awareness that you need a molecular level understanding," says Campen. "At that level, the processes that cause a bacterium to adhere to a mineral in soil or to a tooth have to be the same."


For many years, scientists have noted that bacteria stick to iron particles in soil, but not to sand grains. Until recently, this has been explained by invoking the same forces that hold a balloon to the ceiling after you rub it on your sweater. Researchers thought that the tiny, negative electrical charges on sand grains repelled the negatively charged bacteria, while the positively charged iron attracted them.

However, Campen and his adviser, James Kubicki, assistant professor of geosciences, think it is all about the hair. Bacteria are covered with atomic-scale chains of complex sugar molecules with "one end fastened into the cell membrane and the rest extending outward," explains Campen. "The hair analogy is a good one."

The hairs, actually polymers, present a problem for the charge-based explanation because the strength of the attraction (or repulsion) depends on how close the objects are to each other. Because the charges are so small, at a distance of one hair-length no attraction should be felt.

Electrical charges may still be important, just not for the reasons previously thought. Polymers come in two varieties – one with no charge and another with positive and negative charges distributed along its length. A single bacterium has both, and the aggregate is known as a polymer brush.

Campen put polymers similar to those on bacteria, both charged and uncharged, into a liquid solution with iron and sand-like particles. He discovered that both adhered to the iron, challenging the idea that electrical forces are the cause of stickiness.

The charged hairs may have another purpose. "If you’re a bacterium in a nutrient-rich environment you’d like to stick around for while," says Campen. "If you’re in a nutrient-poor environment you’d rather decrease the chances that you’ll stick to surfaces."

To accomplish this, he thinks the bacterium may rearrange the positive and negative charges along its charged polymers in such a way that they would extend, allowing the whole brush to expand, contact surfaces, and become stuck. Or, in a different arrangement the charged hairs would scrunch up, flattening the brush and allowing the bacterium to be carried away.

Developing a method to control this behavior would provide scientists with the means to send bacteria where needed, or prevent them from accumulating where they can do harm.



The National Science Foundation provided funding for this project.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>