Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-repair protein functions differently in different organisms

25.03.2003


Researchers hope to someday develop an enzyme to repair UV-damaged DNA in humans



Plants, pond scum, and even organisms that live where the sun doesn’t shine have something that humans do not -- an enzyme that repairs DNA damaged by ultraviolet (UV) light.
Cabell Jonas of Richmond, Va., an undergraduate honors student in biology at Virginia Tech, will report on the molecular details of the DNA-repair enzyme at the 225th national meeting of the American Chemical Society March 23-27 in New Orleans. Her poster includes the novel discovery that the enzyme does not operate the same way in different organisms.

UV light is one of the most prevalent causes of DNA damage. In humans, incidents of resulting disease -- in particular, skin cancer, are increasing as exposure to UV increases, says Sunyoung Kim, assistant professor of biochemistry at Virginia Tech. Since the human body does not have DNA photolyase, Kim and her students are studying the DNA-repair enzyme in other systems. "Our aim is to map the molecular interactions and understand the structural changes, with the eventual goal of being able to create or adapt this flavoenzyme from another organism for treatment of skin cancer in humans," says Kim.



She explains that there are two different kinds of DNA repair. One is base incision repair -- the cell machinery gears up, cuts out the damaged section of DNA, and rebuilds it. The second uses DNA photolyase. "A Lone Ranger enzyme repairs the damage without all the machinery or a lot of team players."

In two steps -- photoactivation and photo repair -- the flavoenzyme actually uses light to repair UV damage -- but from a different, visible part of the spectrum. During activation, a flavin adenine dinucleotide (FAD) molecule triggers a transfer of electrons from the flavin portion of the enzyme to the damaged DNA to carry out repair.

"We’ve discovered that, depending on which organism the enzyme comes from, the transfer of electrons through the protein is a little different," says Kim. "That is novel because it is generally assumed -- and is a basis for bioinformatics, for instance -- that the same protein doing the same job, even in different organisms, performs in the same way. But we are finding that this job of DNA repair is done by slightly different proteins in our two model organisms -- e. coli and cyanobacterium (once known as blue-green algae) -- and that the electrons take different paths to perform the repair."

The poster, "Examination of photoactivation in DNA photolyase using difference infrared spectroscopy (CHED 893)," by Jonas, graduate student Lori A. McKee of Butte, Montana, and Kim, will be presented on Monday, March 24, from 2 to 4 p.m. in Convention Center Hall J. Now a senior, Jonas has carried out research in Dr. Kim’s lab since Jonas was a sophomore. McKee received her undergraduate chemistry degree at Montana Tech.



Contact Dr. Kim at sukim1@vt.edu or (540)231-8636 or Cabell Jonas at mjonas@vt.edu(540)231-7091.
PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu


Sunyoung Kim | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>