Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-sediment highways in catalyst

21.03.2003


Dutch chemists have visualised how the porous structure of a zeolite catalyst depends on the production method. Zeolite made with carbon fibres as a template, has particles with straight canals that act as highways for the oil components which must be converted into benzene components.



Zeolite is normally given a steam treatment to improve its catalytic properties. As a result of this the mineral acquires a more sponge-like structure. The canals formed ensure that the zeolite crystal becomes more easily accessible. At least, that is generally thought to be the case.

Ries Janssen from Utrecht University demonstrated that about a quarter of all canals were closed cavities which did not contribute to an improved accessibility. This was shown using electron entomography, a special form of electron microscopy that provides a three-dimensional image.


Subsequently the researcher tried to make better canals in the zeolite. He used carbon powder as a template for this. The zeolite particles crystalise out on the carbon. After the carbon has been burnt away porous zeolite crystals remain. The carbon structure therefore determines the size and shape of the canals in the zeolite.

Under the electron microscope it could be seen that the new method provided a good open structure with twisting canals.

An even better structure was achieved when carbon fibres were used a template. That produced a zeolite with straight canals which acted as highways transporting reacting substances to and from the zeolite.

Zeolite is a natural mineral. It consists mainly of silicon oxide in which the silicon atoms are sometimes replaced by aluminium atoms, which have one electron less per atom. When this charge difference is compensated for with a proton, the zeolite is active for acid catalysis. Zeolites have molecule-sized pores. These micropores are part of the crystal structure. That makes zeolites suitable for use as selective catalysts. Only molecules which fit through the pores can react. The petrochemical industry uses different types of zeolite for various conversions, including the preparation of benzene from crude oil.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl/news

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>