Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold "Nanoplugs" Wire Up Enzymes

21.03.2003


Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department


Could yield biosensors with greater sensitivity, specificity

Scientists at Hebrew University, Israel, in collaboration with researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold “nanoplugs” help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of Science, may yield more sensitive, inexpensive, noninvasive detectors for measuring biological molecules, including, potentially, agents of bioterrorism.

The idea behind the technology, says Brookhaven biologist Jim Hainfeld, who developed the gold nanoparticles and the means of attaching them to other molecules, is to measure the current as an indicator of the number of biological molecules involved in the reaction.




Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism.


One potential application, developed by the Hebrew University collaborators, is to use sensors made from the enzyme-electrode system to measure blood glucose in diabetic patients. In the Science paper, the authors describe how they used gold nanoparticles to attach a glucose-oxidizing enzyme to an electrode, and then used this bioelectrocatalytic system to measure glucose levels.

“The gold nanoparticle —1.4 nanometers, or billionths of a meter, in diameter — plays two very important roles,” says Hainfeld. “First, it specifically orients the binding of the enzyme to the electrode so it’s a very ordered attachment, not random. Second, since gold is a conductor, it provides an electrical path for the flow of electrons.”

When the enzyme oxidizes glucose, electrons flow through the gold nanoparticle into the electrode: The higher the current, the higher the level of glucose.

The experimental results indicate that current flowed seven times faster with the “plugged-in” enzyme system than with the normal enzyme using oxygen as an electron acceptor. Previous attempts to wire the enzyme to an electrode have resulted in lower than normal rates. Higher flow rates increase the ability of sensors made from such a system to detect lower quantities of glucose.

Another important finding was that the measurement of glucose using the plugged-in enzyme-nanoparticle system was not affected by the levels of other substances that can interfere with accurate glucose readings, such as oxygen and ascorbic acid, which is frequently a problem with other biosensors.


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department.

This increased sensitivity and specificity could improve the next generation of glucose-monitoring sensors, particularly those that measure glucose without piercing the skin, which rely on detecting trace quantities.

The plugged-in enzyme technique is not limited to glucose detection. “Many other substances could be attached to electrodes in this way and used to sensitively and easily detect other biological molecules, such as bioterrorism agents or other disease markers,” Hainfeld said.

And because such sensors would be intrinsically simple, containing just a few molecules and an electrode, they would be very compact, inexpensive, and disposable.

The Brookhaven researchers were primarily involved in developing the methods for producing and attaching gold nanoparticles to other molecules, and confirming their presence in the glucose-oxidizing enzyme complex using Brookhaven’s scanning transmission electron microscope. The researchers at Hebrew University used these tools to make the improved biosensors by labeling the enzyme, wiring it to electrodes, and measuring its activity. Brookhaven’s role in the work was funded by the National Institutes of Health and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

Karen McNulty Walsh | DOE/BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2003/bnlpr032003.htm

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>