Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold "Nanoplugs" Wire Up Enzymes

21.03.2003


Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department


Could yield biosensors with greater sensitivity, specificity

Scientists at Hebrew University, Israel, in collaboration with researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold “nanoplugs” help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of Science, may yield more sensitive, inexpensive, noninvasive detectors for measuring biological molecules, including, potentially, agents of bioterrorism.

The idea behind the technology, says Brookhaven biologist Jim Hainfeld, who developed the gold nanoparticles and the means of attaching them to other molecules, is to measure the current as an indicator of the number of biological molecules involved in the reaction.




Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism.


One potential application, developed by the Hebrew University collaborators, is to use sensors made from the enzyme-electrode system to measure blood glucose in diabetic patients. In the Science paper, the authors describe how they used gold nanoparticles to attach a glucose-oxidizing enzyme to an electrode, and then used this bioelectrocatalytic system to measure glucose levels.

“The gold nanoparticle —1.4 nanometers, or billionths of a meter, in diameter — plays two very important roles,” says Hainfeld. “First, it specifically orients the binding of the enzyme to the electrode so it’s a very ordered attachment, not random. Second, since gold is a conductor, it provides an electrical path for the flow of electrons.”

When the enzyme oxidizes glucose, electrons flow through the gold nanoparticle into the electrode: The higher the current, the higher the level of glucose.

The experimental results indicate that current flowed seven times faster with the “plugged-in” enzyme system than with the normal enzyme using oxygen as an electron acceptor. Previous attempts to wire the enzyme to an electrode have resulted in lower than normal rates. Higher flow rates increase the ability of sensors made from such a system to detect lower quantities of glucose.

Another important finding was that the measurement of glucose using the plugged-in enzyme-nanoparticle system was not affected by the levels of other substances that can interfere with accurate glucose readings, such as oxygen and ascorbic acid, which is frequently a problem with other biosensors.


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department.

This increased sensitivity and specificity could improve the next generation of glucose-monitoring sensors, particularly those that measure glucose without piercing the skin, which rely on detecting trace quantities.

The plugged-in enzyme technique is not limited to glucose detection. “Many other substances could be attached to electrodes in this way and used to sensitively and easily detect other biological molecules, such as bioterrorism agents or other disease markers,” Hainfeld said.

And because such sensors would be intrinsically simple, containing just a few molecules and an electrode, they would be very compact, inexpensive, and disposable.

The Brookhaven researchers were primarily involved in developing the methods for producing and attaching gold nanoparticles to other molecules, and confirming their presence in the glucose-oxidizing enzyme complex using Brookhaven’s scanning transmission electron microscope. The researchers at Hebrew University used these tools to make the improved biosensors by labeling the enzyme, wiring it to electrodes, and measuring its activity. Brookhaven’s role in the work was funded by the National Institutes of Health and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

Karen McNulty Walsh | DOE/BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2003/bnlpr032003.htm

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>