Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold "Nanoplugs" Wire Up Enzymes

21.03.2003


Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department


Could yield biosensors with greater sensitivity, specificity

Scientists at Hebrew University, Israel, in collaboration with researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold “nanoplugs” help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of Science, may yield more sensitive, inexpensive, noninvasive detectors for measuring biological molecules, including, potentially, agents of bioterrorism.

The idea behind the technology, says Brookhaven biologist Jim Hainfeld, who developed the gold nanoparticles and the means of attaching them to other molecules, is to measure the current as an indicator of the number of biological molecules involved in the reaction.




Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism.


One potential application, developed by the Hebrew University collaborators, is to use sensors made from the enzyme-electrode system to measure blood glucose in diabetic patients. In the Science paper, the authors describe how they used gold nanoparticles to attach a glucose-oxidizing enzyme to an electrode, and then used this bioelectrocatalytic system to measure glucose levels.

“The gold nanoparticle —1.4 nanometers, or billionths of a meter, in diameter — plays two very important roles,” says Hainfeld. “First, it specifically orients the binding of the enzyme to the electrode so it’s a very ordered attachment, not random. Second, since gold is a conductor, it provides an electrical path for the flow of electrons.”

When the enzyme oxidizes glucose, electrons flow through the gold nanoparticle into the electrode: The higher the current, the higher the level of glucose.

The experimental results indicate that current flowed seven times faster with the “plugged-in” enzyme system than with the normal enzyme using oxygen as an electron acceptor. Previous attempts to wire the enzyme to an electrode have resulted in lower than normal rates. Higher flow rates increase the ability of sensors made from such a system to detect lower quantities of glucose.

Another important finding was that the measurement of glucose using the plugged-in enzyme-nanoparticle system was not affected by the levels of other substances that can interfere with accurate glucose readings, such as oxygen and ascorbic acid, which is frequently a problem with other biosensors.


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department.

This increased sensitivity and specificity could improve the next generation of glucose-monitoring sensors, particularly those that measure glucose without piercing the skin, which rely on detecting trace quantities.

The plugged-in enzyme technique is not limited to glucose detection. “Many other substances could be attached to electrodes in this way and used to sensitively and easily detect other biological molecules, such as bioterrorism agents or other disease markers,” Hainfeld said.

And because such sensors would be intrinsically simple, containing just a few molecules and an electrode, they would be very compact, inexpensive, and disposable.

The Brookhaven researchers were primarily involved in developing the methods for producing and attaching gold nanoparticles to other molecules, and confirming their presence in the glucose-oxidizing enzyme complex using Brookhaven’s scanning transmission electron microscope. The researchers at Hebrew University used these tools to make the improved biosensors by labeling the enzyme, wiring it to electrodes, and measuring its activity. Brookhaven’s role in the work was funded by the National Institutes of Health and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

Karen McNulty Walsh | DOE/BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2003/bnlpr032003.htm

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>