Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UI study discovers cells segregate molecules to control signaling


The human body has barriers such as skin and the lining of airways and gut that protect and separate us from the outside world. If these barriers are breached, our survival is threatened. Therefore it is critical that the cells that form these barriers have mechanisms that can instantly repair any injury.

University of Iowa researchers have discovered a surprisingly simple but effective repair system in airway barrier cells. The UI study shows that by placing a messenger molecule on one side of the barrier and a receiver molecule on the other side, these cells have in place a repair mechanism that is poised to leap into action whenever the barrier is breached. The study findings are published in the March 20 issue of Nature.

One of the researchers, Joseph Zabner, M.D., associate professor of internal medicine, likened the repair mechanism to a situation where a broken fence allows a neighbor’s dog to come in and bother a farmer’s chickens. The dog causes the chickens to squawk, which signals the farmer to go and fix the fence. In the same way, breaks in the cell barrier allow the messenger molecule to get to the receiver, which then sends a signal to the cell to repair the broken barrier.

"If everything is healthy, the message never gets to its receptor because the barrier keeps them apart," said Paola Vermeer, Ph.D., UI assistant research scientist and the lead author of the study. "The instant that barrier is broken, the message can get to its receptor and that receptor sends the signal to start the repair process."

The findings explain how healthy barrier cells can rapidly repair injuries. The results may also have important implications for disease processes.

If a disease weakens the barrier in such a way that allows the message to get to its receptor when it shouldn’t, then the repair mechanism may be turned on inappropriately. Such continuous signaling could lead to cellular abnormalities and may play a role in diseases where barriers are important.

"’If this mechanism is disrupted in disease, then these findings might suggest targets for therapeutic intervention," added Michael Welsh, M.D., the Roy J. Carver Biomedical Research Chair in Internal Medicine and Physiology and Biophysics, UI Professor, and Howard Hughes Medical Institute Investigator. "It might be possible to interfere with the message or its receptor to break the line of communication."

The UI team studied airway epithelial cells, which form the barrier lining the bronchial passages. In this system the researchers looked at a message molecule called heregulin, which is a growth factor, and receiver molecules known as erbB receptors. Heregulin was present on the upper, mucosal surface of the epithelial cells and in the liquid overlying the airway surface. In contrast, the erbB receptors were segregated to the other side of the epithelium where they were located exclusively on the bottom or basolateral surface of the cells.

The UI study found that with the barrier intact, there was no communication between heregulin and its erbB receptor. However, when the researchers damaged the epithelial cell barrier, heregulin immediately gained access to its receptor. This communication triggered cell growth and differentiation leading to rapid repair of the injury.

Certain airway diseases such as asthma, cystic fibrosis and smoking-associated bronchitis are known to impair the airway barrier. The UI study suggests that under these disease conditions heregulin or other messenger molecules might not be well segregated from their receptors, and the receptors might be activated abnormally.

"We asked what would happen in our cell cultures if the erbB receptors were permanently turned on," Vermeer said. "After 10 days the cells were overgrown and showed abnormal structure."

The airways of individuals with these airway diseases also undergo many cellular changes, including a thickening of the airway lining caused by excessive cell growth.

Welsh commented that the results of this study might also be relevant to many other biological systems where a barrier separates a message molecule from its receptor.

"When cancer cells grow, they often lose their barrier function," Welsh said. "We speculate that might mean that signaling molecules could gain access to their receptors, and this might stimulate cell growth."

The separation mechanism may also be important in controlling developmental processes because immature cells do not possess the barriers found in mature cells.

In addition to Vermeer, Zabner and Welsh, the UI researchers involved in the study included Lisa Einwalter, Thomas Moninger, and Tatiana Rokhlina. Jeffrey Kern, M.D., division chief of pulmonary and critical care medicine at University Hospitals of Cleveland, also was part of the team.

The research was funded in part by grants from the National Institutes of Health and the Cystic Fibrosis Foundation.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at

Becky Soglin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>