Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Signals that Cause Hair Follicles to Sprout

20.03.2003


The delicate interplay of two chemical signals coaxes stem cells into becoming hair follicles, according to new research by scientists at the Howard Hughes Medical Institute at The Rockefeller University.

The research has implications for understanding hair growth and hair-follicle development, and it may also help explain how diverse structures, such as teeth and lungs, are formed or how some forms of skin cancer develop.

In an article published in the March 20, 2003, issue of the journal Nature, researchers led by HHMI investigator Elaine Fuchs at The Rockefeller University discovered that two signaling molecules, Wnt and noggin, influence immature stem cells to begin the process of forming hair follicles.



According to Fuchs, studies in her laboratory and others revealed the possible involvement of Wnt and other proteins in the signal transduction pathways that trigger hair-follicle formation. In previous studies, Fuchs and her colleagues produced an abnormally furry mouse with high numbers of hair follicles by genetically altering the animals to produce a stabilized form of a protein called beta-catenin. They also knew that beta-catenin was affected by the Wnt protein. Among the other proteins they implicated in hair-follicle formation was “lymphoid enhancer-binding factor 1” (Lef1), which is part of a transcription complex that controls gene activity.

“One of the aspects that scientists have been trying to understand in development of hair follicles, tooth buds, mammary glands and lungs is how these various transduction pathways work together,” said Fuchs.

The researchers also had evidence that a second mechanism, involving a signaling molecule called bone morphogenetic protein (BMP), is also required for creating epithelial buds — pockets in the skin that are the precursors of hair follicles.

Through experiments using mouse skin cell cultures and skin from embryonic mice with various genes knocked out, the researchers showed that Wnt stabilizes beta-catenin and increases its concentrations in the target stem cell. In concert, noggin inhibits BMP, leading to production of Lef1. In addition, beta-catenin activates Lef1, which in turn downregulates the gene for the protein E-cadherin. E-cadherin is important in cell adhesion. Reduced levels of E-cadherin trigger reduction of cell adhesion structures, called adherens junctions, a process important in initiating formation of the epithelial bud.

“Unlike the earlier experiments, in which we genetically altered the animals, in these experiments, we have altered the stem cells using external factors that the skin normally makes,” said Fuchs. “And in doing so, we have been able to elicit the initial responses that occur in the development of the hair follicles.

“The other important advance is that we now understand how Wnt and inhibition of the BMP signaling pathway work together by regulating this transcription factor complex. The discovery provides insights into how signals simultaneously operate together to activate a particular event, in this case, a transcription factor.”

The findings also hint at how different kinds of cells interact to produce epithelial buds, said Fuchs. “These signals are probably coming from different cells within the skin,” said Fuchs. “The Wnt pathway is likely coming from adjacent epithelial cells, and the noggin pathway from mesenchymal cells. But, they’re working together on a single skin stem cell to produce an activated transcription factor.” Mesenchymal cells are unspecialized cells in embryonic skin from which the dermis will develop.

“How these signal transduction pathways are merging was not understood before, and we now have a much clearer picture of why they need to be there at the same place and time in the developing skin,” said Fuchs.

According to Fuchs, the findings also have implications for understanding how some forms of skin cancer arise. “Our studies suggest that too much or too little E-cadherin can be a bad thing,” she said. “Just the right amount of E-cadherin is needed to loosen the adhesion of the stem cells in the epithelium, to allow them to remodel and grow downward to form the hair follicle. What’s interesting is researchers have found reduced levels of adherens junctions in squamous cell carcinomas of the skin. So, we think our findings may be relevant, because they suggest that if the E-cadherin levels are reduced too much, there can still be a downgrowth of the skin, but one that’s deregulated. The early stages of hair follicle morphogenesis resemble, to some extent, what happens in the development of a tumor mass.”

The studies in Fuchs’s laboratory seek to understand fundamental aspects of hair follicle formation, which could eventually suggest new ways to restore or inhibit hair growth. “These studies raise the possibility that drugs to activate these natural factors could promote hair follicle growth in wanted places, and inhibitory drugs could prevent hair growth in unwanted places,” she said.

Among the next steps in the research, said Fuchs, is to understand how the newly discovered machinery involved in epithelial bud formation links to the later steps that causes mature hair-producing follicles to sprout.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/fuchs2.html

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>