Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Signals that Cause Hair Follicles to Sprout

20.03.2003


The delicate interplay of two chemical signals coaxes stem cells into becoming hair follicles, according to new research by scientists at the Howard Hughes Medical Institute at The Rockefeller University.

The research has implications for understanding hair growth and hair-follicle development, and it may also help explain how diverse structures, such as teeth and lungs, are formed or how some forms of skin cancer develop.

In an article published in the March 20, 2003, issue of the journal Nature, researchers led by HHMI investigator Elaine Fuchs at The Rockefeller University discovered that two signaling molecules, Wnt and noggin, influence immature stem cells to begin the process of forming hair follicles.



According to Fuchs, studies in her laboratory and others revealed the possible involvement of Wnt and other proteins in the signal transduction pathways that trigger hair-follicle formation. In previous studies, Fuchs and her colleagues produced an abnormally furry mouse with high numbers of hair follicles by genetically altering the animals to produce a stabilized form of a protein called beta-catenin. They also knew that beta-catenin was affected by the Wnt protein. Among the other proteins they implicated in hair-follicle formation was “lymphoid enhancer-binding factor 1” (Lef1), which is part of a transcription complex that controls gene activity.

“One of the aspects that scientists have been trying to understand in development of hair follicles, tooth buds, mammary glands and lungs is how these various transduction pathways work together,” said Fuchs.

The researchers also had evidence that a second mechanism, involving a signaling molecule called bone morphogenetic protein (BMP), is also required for creating epithelial buds — pockets in the skin that are the precursors of hair follicles.

Through experiments using mouse skin cell cultures and skin from embryonic mice with various genes knocked out, the researchers showed that Wnt stabilizes beta-catenin and increases its concentrations in the target stem cell. In concert, noggin inhibits BMP, leading to production of Lef1. In addition, beta-catenin activates Lef1, which in turn downregulates the gene for the protein E-cadherin. E-cadherin is important in cell adhesion. Reduced levels of E-cadherin trigger reduction of cell adhesion structures, called adherens junctions, a process important in initiating formation of the epithelial bud.

“Unlike the earlier experiments, in which we genetically altered the animals, in these experiments, we have altered the stem cells using external factors that the skin normally makes,” said Fuchs. “And in doing so, we have been able to elicit the initial responses that occur in the development of the hair follicles.

“The other important advance is that we now understand how Wnt and inhibition of the BMP signaling pathway work together by regulating this transcription factor complex. The discovery provides insights into how signals simultaneously operate together to activate a particular event, in this case, a transcription factor.”

The findings also hint at how different kinds of cells interact to produce epithelial buds, said Fuchs. “These signals are probably coming from different cells within the skin,” said Fuchs. “The Wnt pathway is likely coming from adjacent epithelial cells, and the noggin pathway from mesenchymal cells. But, they’re working together on a single skin stem cell to produce an activated transcription factor.” Mesenchymal cells are unspecialized cells in embryonic skin from which the dermis will develop.

“How these signal transduction pathways are merging was not understood before, and we now have a much clearer picture of why they need to be there at the same place and time in the developing skin,” said Fuchs.

According to Fuchs, the findings also have implications for understanding how some forms of skin cancer arise. “Our studies suggest that too much or too little E-cadherin can be a bad thing,” she said. “Just the right amount of E-cadherin is needed to loosen the adhesion of the stem cells in the epithelium, to allow them to remodel and grow downward to form the hair follicle. What’s interesting is researchers have found reduced levels of adherens junctions in squamous cell carcinomas of the skin. So, we think our findings may be relevant, because they suggest that if the E-cadherin levels are reduced too much, there can still be a downgrowth of the skin, but one that’s deregulated. The early stages of hair follicle morphogenesis resemble, to some extent, what happens in the development of a tumor mass.”

The studies in Fuchs’s laboratory seek to understand fundamental aspects of hair follicle formation, which could eventually suggest new ways to restore or inhibit hair growth. “These studies raise the possibility that drugs to activate these natural factors could promote hair follicle growth in wanted places, and inhibitory drugs could prevent hair growth in unwanted places,” she said.

Among the next steps in the research, said Fuchs, is to understand how the newly discovered machinery involved in epithelial bud formation links to the later steps that causes mature hair-producing follicles to sprout.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/fuchs2.html

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>