Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How humans lost their scents

19.03.2003


In at least one type of endeavor, humans can’t even begin to compete with their best friends. Dogs can be trained to sniff out drugs and explosives or to track down a crime suspect by smell. Why can’t we do the same? Scientists from the Weizmann Institute of Science and the Max Planck Institute for Evolutionary Anthropology propose an explanation for this ancient quandary.



All mammals, including humans, have about 1,000 genes encoding smell-detecting proteins, or olfactory receptors. These receptors, located in the mucous lining of the nose, identify scents by binding to molecules of odorous substances. However, not all olfactory receptor genes are functioning in all species. It is the percentage of the working olfactory genes that determines the sharpness of smell in animals and humans.

In previous studies, the team of Prof. Doron Lancet of the Weizmann Institute’s Molecular Genetics Department discovered that more than half of these genes in humans contain a mutation that prevents them from working properly. In a new study, published in the March 18, 2003 Proceedings of the National Academy of Sciences (PNAS), the scientists tackled the next question: is the genetic "loss" a relatively old phenomenon affecting all primates, or did it occurr only in humans?


To resolve this issue, the researchers compared the DNA sequences of 50 olfactory receptor genes that are common to humans and different species of apes and monkeys. They found that 54 percent of the genes were impaired in humans, as opposed to only 28 to 36 percent in the other species. This research has made it possible to reconstruct this sense’s deterioration over the course of evolution: apparently, its decline took place within an "evolutionary moment" – only 3 to 5 million years– and occurred four times faster in the branch leading to humans compared to other primates.

The scientists conclude that the drop in the sharpness of smell is a purely Homo sapiens feature. It probably stemmed from the development of the brain in the human direction – a direction that entailed increased emphasis on vision, development of the ability to distinguish colors and the capacity to identify other members of the species by facial appearance rather than by smell.

The research team included Yoav Gilad, a Ph.D. student at the Weizmann Institute’s Feinberg Graduate School who conducted collaborative research at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, his adviser Prof. Doron Lancet, Weizmann graduate student Orna Man, and Prof. Svante Pöäbo, head of the Max Planck Institute in Leipzig.


Prof. Doron Lancet’s research is supported by the Crown Human Genome Center, Alfried Krupp von Bohlen und Halbach Foundation, the Avraham and Yehudit (Judy) Goldwasser Fund, Ms. Emilia Mosseri, London, Mr. James Klutznick, Chicago, IL, Kalman & Ida Wolens Foundation and the Jean-Jacques Brunschwig Memorial Fund.


Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>