Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers teach RNA to act as decoy inside living cell to prevent disease activation

19.03.2003


Discovery points to one possible path to novel drug development for cancer, AIDS, some inflammation



Using a new approach, Mayo Clinic researchers have successfully "taught" an RNA molecule inside a living cell to work as a decoy to divert the actions of the protein NF-kappaB, which scientists believe promotes disease development. The findings are published in the current issue of Proceedings of the National Academy of Sciences.

Although it also plays helpful roles in the body, NF-kappaB (pronounced "en-ef-kappa-bee):

  • activates genes that promote cancer-cell survival

  • enables the HIV virus to reproduce, contributing to the onset of AIDS

  • promotes the inflammation process involved in many chronic diseases, such as rheumatoid arthritis

The good news is that once it is diverted by the RNA decoys, NF-kappaB should no longer be available to play its negative role in the chain of molecular events that leads to disease. Mayo’s experimental findings suggest that this could be a new and effective strategy for developing drugs capable of halting the disease process.

In the paper, L. James Maher, III, Ph.D., and Laura Cassiday, Ph.D., Mayo Clinic Department of Biochemistry and Molecular Biology, describe their success with yeast cells and decoy RNA. Under natural conditions in the body, RNA delivers DNA’s plans to cells, which make all the worker proteins to carry out DNA’s executive orders. Drs. Maher and Cassiday have used the RNA/NF-kappaB pairs to divert the NF-kappaB protein. This diversion ensures that the disease-directing capability of NF-kappaB never reaches the DNA.

"We’re trying to develop a somewhat nontraditional drug that is made out of RNA -- which is similar to DNA -- because it has some advantages over other drugs," says Dr. Maher, a molecular biologist. The experiment was performed in his laboratory. "One advantage is that it can be produced by the body’s own cells using a gene-therapy approach in which cells are given the gene for this decoy RNA. But this is a long way off. What’s exciting for us at this point are two discoveries: One is that the small RNAs that we are studying can be taught to do new and exciting things inside living cells. The other is that we have found a new way to use yeast cells as a powerful test system for helping us find the RNAs that are most likely to work in mammalian cells."

"Theoretically, if we want to stop any of these diseases in which NF-kappaB is known to be involved -- cancers, AIDS, some inflammatory diseases -- we’d like to stop the action of this protein; that would be a long-term goal," adds Dr. Cassiday, who is a post-doctoral fellow at Mayo Graduate School. "Our short-term goal is to learn the capabilities of these small, folded RNAs."

The Experiment: How It Works, Where It Leads

Step 1: Test tube experiments

In Dr. Maher’s lab, researchers used a novel approach to finding the right decoy RNAs. Lori Lebruska, Ph.D., a graduate of Mayo Graduate School, took a random collection of one hundred thousand billion (that’s one followed by 14 zeroes) small RNAs. She then mixed the RNAs with NF-kappaB protein and captured the "smartest" RNAs on a filter. After many repeated capture cycles, the RNAs that stuck best to NF-kappaB were the most likely to be competent decoys.

Step 2: Testing the RNA decoy in a living cell.

Drs. Maher and Cassiday had to see if the decoy RNA could bind NF-kappaB not just in a test tube but in the chaos of a cell.

"It’s a whole different ball game in the cell, because there are thousands of other proteins that the RNA might bind to," says Dr. Cassiday. "These proteins could distract it from what we want it to do: find and bind to NF-kappaB. We weren’t sure the RNA was specific enough to target NF-kappaB under these conditions. Also, there are all sorts of enzymes that degrade RNA within a cell. We weren’t sure the RNA would be stable enough to survive and do its job. These were all considerations that needed to be resolved in our cellular experiments."

To test the RNA decoy’s ability to adapt to life inside cells, the researchers chose yeast, which is very similar to human cells, as a model organism.

"The rules change inside the cell," says Dr. Maher. "The real question becomes how can we send the RNA molecules back to school to adapt to these new cellular rules when all they previously knew how to do was succeed with test-tube rules?"

After simultaneously screening thousands of RNA variations in yeast, Drs. Cassiday and Maher found one RNA that had learned to do it all. Dr. Maher notes that by increasing the amount of this molecule, bigger and bigger decoy effects emerge, allowing for significant inhibition of NF-kappaB’s disease capabilities.

The next step for the Mayo research team is to adapt this RNA decoy to life in mammalian cells to see if it can "learn" the additional rules necessary to survive and foil NF-kappaB in its natural setting. If it does, it might one day be a candidate for a new kind of drug therapy.


Shelly Plutowski
507-284-5005 (days)
507-284-2511(evenings)
email: newsbureau@mayo.edu

Shelly Plutowski | EurekAlert!
Further information:
http://www.mayo.edu/
http://www.pnas.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>