Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers teach RNA to act as decoy inside living cell to prevent disease activation

19.03.2003


Discovery points to one possible path to novel drug development for cancer, AIDS, some inflammation



Using a new approach, Mayo Clinic researchers have successfully "taught" an RNA molecule inside a living cell to work as a decoy to divert the actions of the protein NF-kappaB, which scientists believe promotes disease development. The findings are published in the current issue of Proceedings of the National Academy of Sciences.

Although it also plays helpful roles in the body, NF-kappaB (pronounced "en-ef-kappa-bee):

  • activates genes that promote cancer-cell survival

  • enables the HIV virus to reproduce, contributing to the onset of AIDS

  • promotes the inflammation process involved in many chronic diseases, such as rheumatoid arthritis

The good news is that once it is diverted by the RNA decoys, NF-kappaB should no longer be available to play its negative role in the chain of molecular events that leads to disease. Mayo’s experimental findings suggest that this could be a new and effective strategy for developing drugs capable of halting the disease process.

In the paper, L. James Maher, III, Ph.D., and Laura Cassiday, Ph.D., Mayo Clinic Department of Biochemistry and Molecular Biology, describe their success with yeast cells and decoy RNA. Under natural conditions in the body, RNA delivers DNA’s plans to cells, which make all the worker proteins to carry out DNA’s executive orders. Drs. Maher and Cassiday have used the RNA/NF-kappaB pairs to divert the NF-kappaB protein. This diversion ensures that the disease-directing capability of NF-kappaB never reaches the DNA.

"We’re trying to develop a somewhat nontraditional drug that is made out of RNA -- which is similar to DNA -- because it has some advantages over other drugs," says Dr. Maher, a molecular biologist. The experiment was performed in his laboratory. "One advantage is that it can be produced by the body’s own cells using a gene-therapy approach in which cells are given the gene for this decoy RNA. But this is a long way off. What’s exciting for us at this point are two discoveries: One is that the small RNAs that we are studying can be taught to do new and exciting things inside living cells. The other is that we have found a new way to use yeast cells as a powerful test system for helping us find the RNAs that are most likely to work in mammalian cells."

"Theoretically, if we want to stop any of these diseases in which NF-kappaB is known to be involved -- cancers, AIDS, some inflammatory diseases -- we’d like to stop the action of this protein; that would be a long-term goal," adds Dr. Cassiday, who is a post-doctoral fellow at Mayo Graduate School. "Our short-term goal is to learn the capabilities of these small, folded RNAs."

The Experiment: How It Works, Where It Leads

Step 1: Test tube experiments

In Dr. Maher’s lab, researchers used a novel approach to finding the right decoy RNAs. Lori Lebruska, Ph.D., a graduate of Mayo Graduate School, took a random collection of one hundred thousand billion (that’s one followed by 14 zeroes) small RNAs. She then mixed the RNAs with NF-kappaB protein and captured the "smartest" RNAs on a filter. After many repeated capture cycles, the RNAs that stuck best to NF-kappaB were the most likely to be competent decoys.

Step 2: Testing the RNA decoy in a living cell.

Drs. Maher and Cassiday had to see if the decoy RNA could bind NF-kappaB not just in a test tube but in the chaos of a cell.

"It’s a whole different ball game in the cell, because there are thousands of other proteins that the RNA might bind to," says Dr. Cassiday. "These proteins could distract it from what we want it to do: find and bind to NF-kappaB. We weren’t sure the RNA was specific enough to target NF-kappaB under these conditions. Also, there are all sorts of enzymes that degrade RNA within a cell. We weren’t sure the RNA would be stable enough to survive and do its job. These were all considerations that needed to be resolved in our cellular experiments."

To test the RNA decoy’s ability to adapt to life inside cells, the researchers chose yeast, which is very similar to human cells, as a model organism.

"The rules change inside the cell," says Dr. Maher. "The real question becomes how can we send the RNA molecules back to school to adapt to these new cellular rules when all they previously knew how to do was succeed with test-tube rules?"

After simultaneously screening thousands of RNA variations in yeast, Drs. Cassiday and Maher found one RNA that had learned to do it all. Dr. Maher notes that by increasing the amount of this molecule, bigger and bigger decoy effects emerge, allowing for significant inhibition of NF-kappaB’s disease capabilities.

The next step for the Mayo research team is to adapt this RNA decoy to life in mammalian cells to see if it can "learn" the additional rules necessary to survive and foil NF-kappaB in its natural setting. If it does, it might one day be a candidate for a new kind of drug therapy.


Shelly Plutowski
507-284-5005 (days)
507-284-2511(evenings)
email: newsbureau@mayo.edu

Shelly Plutowski | EurekAlert!
Further information:
http://www.mayo.edu/
http://www.pnas.org

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>