Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers teach RNA to act as decoy inside living cell to prevent disease activation

19.03.2003


Discovery points to one possible path to novel drug development for cancer, AIDS, some inflammation



Using a new approach, Mayo Clinic researchers have successfully "taught" an RNA molecule inside a living cell to work as a decoy to divert the actions of the protein NF-kappaB, which scientists believe promotes disease development. The findings are published in the current issue of Proceedings of the National Academy of Sciences.

Although it also plays helpful roles in the body, NF-kappaB (pronounced "en-ef-kappa-bee):

  • activates genes that promote cancer-cell survival

  • enables the HIV virus to reproduce, contributing to the onset of AIDS

  • promotes the inflammation process involved in many chronic diseases, such as rheumatoid arthritis

The good news is that once it is diverted by the RNA decoys, NF-kappaB should no longer be available to play its negative role in the chain of molecular events that leads to disease. Mayo’s experimental findings suggest that this could be a new and effective strategy for developing drugs capable of halting the disease process.

In the paper, L. James Maher, III, Ph.D., and Laura Cassiday, Ph.D., Mayo Clinic Department of Biochemistry and Molecular Biology, describe their success with yeast cells and decoy RNA. Under natural conditions in the body, RNA delivers DNA’s plans to cells, which make all the worker proteins to carry out DNA’s executive orders. Drs. Maher and Cassiday have used the RNA/NF-kappaB pairs to divert the NF-kappaB protein. This diversion ensures that the disease-directing capability of NF-kappaB never reaches the DNA.

"We’re trying to develop a somewhat nontraditional drug that is made out of RNA -- which is similar to DNA -- because it has some advantages over other drugs," says Dr. Maher, a molecular biologist. The experiment was performed in his laboratory. "One advantage is that it can be produced by the body’s own cells using a gene-therapy approach in which cells are given the gene for this decoy RNA. But this is a long way off. What’s exciting for us at this point are two discoveries: One is that the small RNAs that we are studying can be taught to do new and exciting things inside living cells. The other is that we have found a new way to use yeast cells as a powerful test system for helping us find the RNAs that are most likely to work in mammalian cells."

"Theoretically, if we want to stop any of these diseases in which NF-kappaB is known to be involved -- cancers, AIDS, some inflammatory diseases -- we’d like to stop the action of this protein; that would be a long-term goal," adds Dr. Cassiday, who is a post-doctoral fellow at Mayo Graduate School. "Our short-term goal is to learn the capabilities of these small, folded RNAs."

The Experiment: How It Works, Where It Leads

Step 1: Test tube experiments

In Dr. Maher’s lab, researchers used a novel approach to finding the right decoy RNAs. Lori Lebruska, Ph.D., a graduate of Mayo Graduate School, took a random collection of one hundred thousand billion (that’s one followed by 14 zeroes) small RNAs. She then mixed the RNAs with NF-kappaB protein and captured the "smartest" RNAs on a filter. After many repeated capture cycles, the RNAs that stuck best to NF-kappaB were the most likely to be competent decoys.

Step 2: Testing the RNA decoy in a living cell.

Drs. Maher and Cassiday had to see if the decoy RNA could bind NF-kappaB not just in a test tube but in the chaos of a cell.

"It’s a whole different ball game in the cell, because there are thousands of other proteins that the RNA might bind to," says Dr. Cassiday. "These proteins could distract it from what we want it to do: find and bind to NF-kappaB. We weren’t sure the RNA was specific enough to target NF-kappaB under these conditions. Also, there are all sorts of enzymes that degrade RNA within a cell. We weren’t sure the RNA would be stable enough to survive and do its job. These were all considerations that needed to be resolved in our cellular experiments."

To test the RNA decoy’s ability to adapt to life inside cells, the researchers chose yeast, which is very similar to human cells, as a model organism.

"The rules change inside the cell," says Dr. Maher. "The real question becomes how can we send the RNA molecules back to school to adapt to these new cellular rules when all they previously knew how to do was succeed with test-tube rules?"

After simultaneously screening thousands of RNA variations in yeast, Drs. Cassiday and Maher found one RNA that had learned to do it all. Dr. Maher notes that by increasing the amount of this molecule, bigger and bigger decoy effects emerge, allowing for significant inhibition of NF-kappaB’s disease capabilities.

The next step for the Mayo research team is to adapt this RNA decoy to life in mammalian cells to see if it can "learn" the additional rules necessary to survive and foil NF-kappaB in its natural setting. If it does, it might one day be a candidate for a new kind of drug therapy.


Shelly Plutowski
507-284-5005 (days)
507-284-2511(evenings)
email: newsbureau@mayo.edu

Shelly Plutowski | EurekAlert!
Further information:
http://www.mayo.edu/
http://www.pnas.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>