Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pheromones in male perspiration reduce women’s tension, alter hormone response

17.03.2003


Scientists at the University of Pennsylvania and the Monell Chemical Senses Center in Philadelphia have found that exposure to male perspiration has marked psychological and physiological effects on women: It can brighten women’s moods, reducing tension and increasing relaxation, and also has a direct effect on the release of luteinizing hormone, which affects the length and timing of the menstrual cycle.



The results will be published in June in the journal Biology of Reproduction and currently appear on the journal’s Web site.

"It has long been recognized that female pheromones can affect the menstrual cycles of other women," said George Preti, a member of the Monell Center and adjunct professor of dermatology in Penn’s School of Medicine. "These findings are the first to document mood and neuroendocrine effects of male pheromones on females."


In a study led by Preti and colleague Charles J. Wysocki, extracts from the underarms of male volunteers were applied to the upper lip of 18 women ages 25 to 45. During the six hours of exposure to the compound, the women were asked to rate their mood using a fixed scale.

"Much to our surprise, the women reported feeling less tense and more relaxed during exposure to the male extract," said Wysocki, a member of the Monell Center and adjunct professor of animal biology in Penn’s School of Veterinary Medicine. "This suggests that there may be much more going on in social settings like singles bars than meets the eye."

After the women’s exposure to the underarm extract, further testing revealed a shift in blood levels of luteinizing hormone. Levels of this reproductive hormone, produced in pulses by the pituitary gland, typically surge right before ovulation but also experience hundreds of smaller peaks throughout the menstrual cycle.

Preti and Wysocki found that application of male underarm secretions hastened onset of these smaller pulses. Duration to the next pulse of luteinizing hormone was shortened by an average 20 percent, from 59 to 47 minutes.

Preti and Wysocki are now looking at the several dozen individual compounds that make up male perspiration to determine which may be responsible for the effects they observed. They also plan to study whether female pheromones can affect men’s moods or physiological functions.

"This may open the door to pharmacological approaches to manage onset of ovulation or the effects of premenstrual syndrome or even natural products to aid relaxation," Wysocki said. "By determining how pheromones impact mood and endocrine response, we might be able to build a better male odor: molecules that more effectively manipulate the effects we observed."

The underarm extracts used in the study came from men who bathed with fragrance-free soap and refrained from deodorant use for four weeks. The extracts were blended to avoid reactions to individual men’s odors. None of the women involved in the study discerned that male sweat had been applied right under their noses; some believed they were involved in a study of alcohol, perfume or even lemon floor wax.

Half the women received three applications of the male secretions during a six-hour period, followed three controlled exposures to ethanol, used as a control substance, over a six-hour period. For the other half, the regimen was reversed. The women did not report feeling any more or less energetic, sensuous, tired, calm, sexy, anxious, fatigued or active after exposure to male perspiration.

Preti and Wysocki are joined in the Biology of Reproduction paper by co-authors Kurt T. Barnhart and Steven J. Sondheimer of Penn’s Department of Obstetrics and Gynecology and James J. Leyden of Penn’s Department of Dermatology. Their work is sponsored by the National Institutes of Health.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>