Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel molecule may contribute to intestinal health

14.03.2003


New data suggests that a novel molecule appears to be involved in the intestine’s response to infection. The study was a collaboration between researchers at Washington University School of Medicine in St. Louis and the Institut Curie in Paris. It appears in the March 13 issue of the journal Nature.



“This is the first identified function for this molecule,” says co-senior author Susan Gilfillan, Ph.D., research instructor in pathology and immunology at the School of Medicine. “Our findings suggest that this molecule may play a fundamental role in gut immunology.”

When a virus enters the body, proteins called antigens appear on the surface of cells and alert the immune system to infection. A molecule called MR1, which was discovered eight years ago, appears to be very similar to the main category of molecules that deliver antigens to the cell surface, called major histocompatibility complex class I (MHC Class I). However, its function is not yet understood.


To learn more about MR1, Gilfillan and colleagues developed a strain of mice lacking the molecule. The mice failed to develop a small population of immune cells known as mucosal-associated invariant t cells (MAIT cells). MAIT cells were just recently discovered by the study’s other co-senior author, Olivier Lantz, Ph.D., at the Institut Curie in Paris. The current study presents the first extensive characterization of these cells.

“These results help us begin to understand the function of MR1 and the role of MAIT cells in immunology,” Gilfillan says. “Both are found not only in mice but also in humans and other animals, such as cows, which implies that they probably are very important.”

The team also discovered that MAIT cells appear to be primarily located in the mucous membrane of the intestine, or gut. Moreover, mice lacking bacteria normally found in the gut do not have MAIT cells.

From these results, Gilfillan and colleagues conclude that MAIT cells rely on both MR1 and intestinal bacteria. In addition, the results imply that MR1 and MAIT cells play a critical role in the intestine’s response to infection. The team plans to continue investigating these interactions and also to explore whether MR1 and MAIT are involved in fighting infections in other organs lined with mucous-producing cells, including the lungs.

“It’s possible that MR1 and MAIT cells are involved in a variety of diseases of the gut, particularly those relating to microorganisms that reside in the intestine,” Gilfillan says. “We also expect this line of research will be of particular interest for general mucosal immunology, and may prove useful in studying other organ systems as well.”


###
Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T (MAIT) cells by MR1. Nature, March 13, 2003.

Funding from Association de la Recherche Contre la Cander, Fondation de la recherché Medicale, INSERM and Section Medicale de l’Institut Curie supported this research.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>