Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel molecule may contribute to intestinal health

14.03.2003


New data suggests that a novel molecule appears to be involved in the intestine’s response to infection. The study was a collaboration between researchers at Washington University School of Medicine in St. Louis and the Institut Curie in Paris. It appears in the March 13 issue of the journal Nature.



“This is the first identified function for this molecule,” says co-senior author Susan Gilfillan, Ph.D., research instructor in pathology and immunology at the School of Medicine. “Our findings suggest that this molecule may play a fundamental role in gut immunology.”

When a virus enters the body, proteins called antigens appear on the surface of cells and alert the immune system to infection. A molecule called MR1, which was discovered eight years ago, appears to be very similar to the main category of molecules that deliver antigens to the cell surface, called major histocompatibility complex class I (MHC Class I). However, its function is not yet understood.


To learn more about MR1, Gilfillan and colleagues developed a strain of mice lacking the molecule. The mice failed to develop a small population of immune cells known as mucosal-associated invariant t cells (MAIT cells). MAIT cells were just recently discovered by the study’s other co-senior author, Olivier Lantz, Ph.D., at the Institut Curie in Paris. The current study presents the first extensive characterization of these cells.

“These results help us begin to understand the function of MR1 and the role of MAIT cells in immunology,” Gilfillan says. “Both are found not only in mice but also in humans and other animals, such as cows, which implies that they probably are very important.”

The team also discovered that MAIT cells appear to be primarily located in the mucous membrane of the intestine, or gut. Moreover, mice lacking bacteria normally found in the gut do not have MAIT cells.

From these results, Gilfillan and colleagues conclude that MAIT cells rely on both MR1 and intestinal bacteria. In addition, the results imply that MR1 and MAIT cells play a critical role in the intestine’s response to infection. The team plans to continue investigating these interactions and also to explore whether MR1 and MAIT are involved in fighting infections in other organs lined with mucous-producing cells, including the lungs.

“It’s possible that MR1 and MAIT cells are involved in a variety of diseases of the gut, particularly those relating to microorganisms that reside in the intestine,” Gilfillan says. “We also expect this line of research will be of particular interest for general mucosal immunology, and may prove useful in studying other organ systems as well.”


###
Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T (MAIT) cells by MR1. Nature, March 13, 2003.

Funding from Association de la Recherche Contre la Cander, Fondation de la recherché Medicale, INSERM and Section Medicale de l’Institut Curie supported this research.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>