Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Transgenic Chicken to Study Embryo Development

11.03.2003


North Carolina State University poultry scientists have developed a powerful new tool to aid the understanding of how chicken embryos develop.

The research of Dr. Paul Mozdziak, assistant professor of poultry science, and Dr. James Petitte, professor of poultry science, resulted in successfully transferring a gene into a chicken and establishing a line of chickens carrying that specific marker gene.

Currently, the chick embryo is often used as a model to understand normal and abnormal embryo development. The new lines of transgenic chicken provide a new tool that can be employed in studies aimed at understanding birth defects such as limb deformities and spina bifida. The researchers say learning the mechanisms behind how cells behave during embryo development could eventually provide clues to halting developmental disabilities and may lead to other uses not yet imagined, including improvements in human and animal health.



The research appears in the March edition of Developmental Dynamics.

“Although there are people who have made transgenic chickens before, no one has produced a transgenic chicken expressing a reporter gene that can be easily tracked,” Mozdziak says. “We can now take cells from our transgenic chicken and put those cells into a chick embryo or another transgenic chicken and see how the cells behave and interact with each other.”

“This tool provides the impetus to go to the next level of looking at avian stem cells in embryos, putting these stem cells in different places and seeing where they end up,” Petitte says.
The researchers say gene transfer is much more complicated in chickens than in, say, mice. Chicken embryos contain about 50,000 cells before the egg is laid; gene transfer in other mammals involves inserting DNA into just one cell.

Mozdziak and Petitte developed the transgenic chicken by taking a RNA virus, or retrovirus, carrying a reporter gene – the lacZ gene, which is easy to detect and which expresses a protein, beta-galactosidase – and injecting it into the blastoderm, or layer of cells on the surface of the yolk, of freshly laid chicken eggs. The eggs were allowed to hatch, and chickens were screened for the presence of the lacZ gene. Eight of 15 male chickens that lived to sexual maturity carried the lacZ gene in their semen, the researchers say.

These eight chickens were then mated with female non-transgenic chickens. Of the chicks produced, two males tested positive for the lacZ gene. These two males were mated with normal females and 50 percent of their offspring contained the lacZ gene as expected.

Further, the second-generation chickens expressed beta-galactosidase, and the lacZ gene is apparently stable from generation to generation.

Petitte says that other transgenic chickens have carried the lacZ gene, but that this is the first time that a transgenic chicken line that expresses beta-galactosidase has been developed.

“This is a really powerful research tool, and it’s the first time anyone has had this tool in avian biology,” he said.

_petitte@ncsu.edu | North Carolina State University
Further information:
http://www.ncsu.edu/news/press_releases/03_03/71.htm

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>