Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly identified molecules contribute to normal silencing of most human genes


Connections seen to X-linked mental retardation and some forms of leukemia

Most of the time, most of the estimated 35,000 genes in the human genome are silent, securely stored away in the tightly coiled structure of chromatin, which makes up chromosomes. Inside chromatin, the DNA is wound around small proteins called histones, making it unavailable to the cellular machinery that would otherwise read its coded genetic information. Specific cell and tissue types are characterized by the carefully controlled activation of selected sets of signature genes.

Now, a team of researchers at The Wistar Institute reports discovery of a family of molecular complexes involved in the repression of extensive sets of tissue-specific genes throughout the body. Additionally, one member of the family involved in repressing brain-specific genes in other types of tissues has been found to include a gene thought to be responsible for X-linked mental retardation when mutated. Other components of these complexes have been associated with certain forms of leukemia.

The new study appears in the current issue of the Journal of Biological Chemistry.

"One of the mysteries of gene expression is how different tissues in the body -heart, liver, brain - express the genes that are specific to them," says Ramin Shiekhattar, Ph.D., senior author on the report and an associate professor at The Wistar Institute. "What really controls this? For a long time, people have been looking for the factors that activate these genes, but what we and others are learning is that the critical mechanism used to regulate entire sets of genes is actually repression.

"In some ways, it’s like driving a car. You may not realize much driving relies on braking rather than acceleration. Without the brake, you can’t control the car."

The new findings may have relevance for understanding diseases characterized by uncontrolled or inappropriate gene activation and growth, with cancer perhaps the most significant of these.

The newly discovered molecular complexes share two core subunits and appear to operate as co-repressors with a number of tissue-specific repressor molecules to maintain the gene-silencing structure of chromatin.

One of the shared subunits is a type of enzyme, a so-called histone deacetylase, or HDAC, known to repress gene activation by modifying chromatin structure in specific ways. The second core subunit shared by these new complexes is called BHC110. This component, too, appears to be an enzyme, Shiekhattar says, although its specific activity remains to be determined.

Biochemical assays showed that BHC110 and the HDAC enzyme were both present in up to ten other unique complexes likely be involved in gene repression. Current experiments are aimed at learning more about the function of these two shared components of the complexes, and also at learning more about the components unique to each complex.

The equally contributing lead authors on the Journal of Biological Chemistry study are Mohamed-Ali Hakimi, Ph.D., and Yuanshu Dong, both at The Wistar Institute. William S. Lane at Harvard University collaborated on the study, as did Wistar professor David W. Speicher, Ph.D.

This research was supported by grants from the National Institutes of Health and the American Cancer Society.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

News releases from The Wistar Institute are available to reporters by direct e-mail or fax upon request. They are also posted electronically to Wistar’s home page (, and to EurekAlert! (, an Internet resource sponsored by the American Association for the Advancement of Science.

Franklin Hoke | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>