Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified molecules contribute to normal silencing of most human genes

10.03.2003


Connections seen to X-linked mental retardation and some forms of leukemia



Most of the time, most of the estimated 35,000 genes in the human genome are silent, securely stored away in the tightly coiled structure of chromatin, which makes up chromosomes. Inside chromatin, the DNA is wound around small proteins called histones, making it unavailable to the cellular machinery that would otherwise read its coded genetic information. Specific cell and tissue types are characterized by the carefully controlled activation of selected sets of signature genes.

Now, a team of researchers at The Wistar Institute reports discovery of a family of molecular complexes involved in the repression of extensive sets of tissue-specific genes throughout the body. Additionally, one member of the family involved in repressing brain-specific genes in other types of tissues has been found to include a gene thought to be responsible for X-linked mental retardation when mutated. Other components of these complexes have been associated with certain forms of leukemia.


The new study appears in the current issue of the Journal of Biological Chemistry.

"One of the mysteries of gene expression is how different tissues in the body -heart, liver, brain - express the genes that are specific to them," says Ramin Shiekhattar, Ph.D., senior author on the report and an associate professor at The Wistar Institute. "What really controls this? For a long time, people have been looking for the factors that activate these genes, but what we and others are learning is that the critical mechanism used to regulate entire sets of genes is actually repression.

"In some ways, it’s like driving a car. You may not realize much driving relies on braking rather than acceleration. Without the brake, you can’t control the car."

The new findings may have relevance for understanding diseases characterized by uncontrolled or inappropriate gene activation and growth, with cancer perhaps the most significant of these.

The newly discovered molecular complexes share two core subunits and appear to operate as co-repressors with a number of tissue-specific repressor molecules to maintain the gene-silencing structure of chromatin.

One of the shared subunits is a type of enzyme, a so-called histone deacetylase, or HDAC, known to repress gene activation by modifying chromatin structure in specific ways. The second core subunit shared by these new complexes is called BHC110. This component, too, appears to be an enzyme, Shiekhattar says, although its specific activity remains to be determined.

Biochemical assays showed that BHC110 and the HDAC enzyme were both present in up to ten other unique complexes likely be involved in gene repression. Current experiments are aimed at learning more about the function of these two shared components of the complexes, and also at learning more about the components unique to each complex.

The equally contributing lead authors on the Journal of Biological Chemistry study are Mohamed-Ali Hakimi, Ph.D., and Yuanshu Dong, both at The Wistar Institute. William S. Lane at Harvard University collaborated on the study, as did Wistar professor David W. Speicher, Ph.D.


This research was supported by grants from the National Institutes of Health and the American Cancer Society.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

News releases from The Wistar Institute are available to reporters by direct e-mail or fax upon request. They are also posted electronically to Wistar’s home page (http://www.wistar.upenn.edu), and to EurekAlert! (http://www.eurekalert.org), an Internet resource sponsored by the American Association for the Advancement of Science.


Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>