Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified molecules contribute to normal silencing of most human genes

10.03.2003


Connections seen to X-linked mental retardation and some forms of leukemia



Most of the time, most of the estimated 35,000 genes in the human genome are silent, securely stored away in the tightly coiled structure of chromatin, which makes up chromosomes. Inside chromatin, the DNA is wound around small proteins called histones, making it unavailable to the cellular machinery that would otherwise read its coded genetic information. Specific cell and tissue types are characterized by the carefully controlled activation of selected sets of signature genes.

Now, a team of researchers at The Wistar Institute reports discovery of a family of molecular complexes involved in the repression of extensive sets of tissue-specific genes throughout the body. Additionally, one member of the family involved in repressing brain-specific genes in other types of tissues has been found to include a gene thought to be responsible for X-linked mental retardation when mutated. Other components of these complexes have been associated with certain forms of leukemia.


The new study appears in the current issue of the Journal of Biological Chemistry.

"One of the mysteries of gene expression is how different tissues in the body -heart, liver, brain - express the genes that are specific to them," says Ramin Shiekhattar, Ph.D., senior author on the report and an associate professor at The Wistar Institute. "What really controls this? For a long time, people have been looking for the factors that activate these genes, but what we and others are learning is that the critical mechanism used to regulate entire sets of genes is actually repression.

"In some ways, it’s like driving a car. You may not realize much driving relies on braking rather than acceleration. Without the brake, you can’t control the car."

The new findings may have relevance for understanding diseases characterized by uncontrolled or inappropriate gene activation and growth, with cancer perhaps the most significant of these.

The newly discovered molecular complexes share two core subunits and appear to operate as co-repressors with a number of tissue-specific repressor molecules to maintain the gene-silencing structure of chromatin.

One of the shared subunits is a type of enzyme, a so-called histone deacetylase, or HDAC, known to repress gene activation by modifying chromatin structure in specific ways. The second core subunit shared by these new complexes is called BHC110. This component, too, appears to be an enzyme, Shiekhattar says, although its specific activity remains to be determined.

Biochemical assays showed that BHC110 and the HDAC enzyme were both present in up to ten other unique complexes likely be involved in gene repression. Current experiments are aimed at learning more about the function of these two shared components of the complexes, and also at learning more about the components unique to each complex.

The equally contributing lead authors on the Journal of Biological Chemistry study are Mohamed-Ali Hakimi, Ph.D., and Yuanshu Dong, both at The Wistar Institute. William S. Lane at Harvard University collaborated on the study, as did Wistar professor David W. Speicher, Ph.D.


This research was supported by grants from the National Institutes of Health and the American Cancer Society.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

News releases from The Wistar Institute are available to reporters by direct e-mail or fax upon request. They are also posted electronically to Wistar’s home page (http://www.wistar.upenn.edu), and to EurekAlert! (http://www.eurekalert.org), an Internet resource sponsored by the American Association for the Advancement of Science.


Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>