Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins scientists create forgetful mouse

10.03.2003


Studying mice, scientists from Johns Hopkins have successfully prevented a molecular event in brain cells that they’ve found is required for storing spatial memories. Unlike regular mice, the engineered rodents quickly forgot where to find a resting place in a pool of water, the researchers report in the March 7 issue of the journal Cell.



The experiments are believed to be the first to prove that subtly altering the chemistry of a certain protein can profoundly affect a brain cell’s ability to respond to external stimulation, a process called neuronal plasticity, long thought to underlie learning and memory.

By genetically altering part of a receptor that binds glutamate -- the most important excitatory chemical in the brain -- the scientists created a version of the protein that could not be modified by adding phosphate groups. In their experiments, preventing phosphorylation of the receptor kept it from responding normally to external stimulation in the lab and limited how long animals could store new memories.


"Since 1986, phosphorylation has been recognized as a key to modulating receptor responses to neurotransmitters like glutamate, but this is the first demonstration that phosphorylation of a particular target protein mediates the processes we believe are behind learning and memory," says Richard Huganir, Ph.D., professor of neuroscience in the Johns Hopkins School of Medicine’s Institute for Basic Biomedical Sciences. "This new work shows that phosphorylation of this target protein does indeed affect an animal’s ability to remember."

Mice with the "phosphate-free" version of the protein, known as GluR1, learned to find a hidden platform in a pool of water as well as normal mice, but couldn’t remember its position eight hours later, the researchers report. In contrast, normal mice remembered what they’d learned even after 24 hours.

"Rodents’ spatial learning and memory is highly developed because they must navigate a complex environment in their natural habitat and doing so correctly is crucial to their survival and safety," says Michela Gallagher, Ph.D., professor of psychological and brain sciences in the Krieger School of Arts and Sciences at The Johns Hopkins University. "The neuronal processes behind this form of learning are a convenient and measurable test of learning and memory."

The neuronal plasticity involved in spatial learning may also play a large role in the "wiring" of the brain during development, and in conditions such as epilepsy, addiction, chronic pain and others in which repeated experience creates new memories, the researchers say.

Huganir studies the role of receptor phosphorylation in two neuronal processes, long-term depression (LTD) and long-term potentiation (LTP), that affect a neuron’s ability to communicate with neighboring neurons at points called synapses. By improving communication with a specific neuron and inhibiting communication with others, new neuronal pathways are formed, and each pathway is thought to represent a particular memory, says Huganir.

Communication, or transmission, at a given synapse depends on how the local receptors change in response to stimulation, either artificial (applying an electrical stimulation) or natural (i.e., looking for the platform in a pool).

To increase communication between two neurons, as in LTP, new receptors can be shipped to the front line or the function of existing receptors can be enhanced. To inhibit communication, as in LTD, receptors at the synapse may be recalled or their function diminished. These processes are due -- at least in part -- to phosphorylation of proteins that make up the various receptors, Huganir thinks.

Their experiments with neurons from the hippocampus of mice engineered to make only the "phosphate-free" version of GluR1 prove that phosphorylation of the protein is crucial for LTD and LTP to take place.

"We’ve established that the two phosphorylation sites on GluR1 are crucial for retention of spatial learning, but it is likely that other sites in other subunits of this glutamate receptor will also play a role," says Huganir.

Glutamate not only elicits many normal neuronal responses but excessive amounts can actually cause neurons to die. So-called glutamate toxicity is thought to contribute to certain neurological diseases, including epilepsy, stroke and amyotrophic lateral sclerosis, or ALS. Understanding how glutamate receptors are regulated could one day affect treatment of these disorders, say the researchers.

The experiments were funded by the Howard Hughes Medical Institute, the Robert Packard Center for ALS Research at Johns Hopkins, and the National Institutes of Health.

Authors on the report are Huganir, Hey-Kyoung Lee, Kogo Takamiya, Hengye Man, Chong-Hyun Kim, Gavin Rumbaugh, Sandy Yu, Lin Ding and Chun He of the Johns Hopkins School of Medicine; Gallagher and Jung-Soo Han of The Johns Hopkins University; and Ronald Petralia and Robert Wenthold of the National Institute on Deafness and Other Communication Disorders, part of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.cell.com/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>