Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints regulator of imprinted gene expression

10.03.2003


Fndings in mice hold implications for human disorders



New research at the University of North Carolina at Chapel Hill offers an important contribution to a new wave of thinking in genetics: the idea that not all human disease states are due to alterations in DNA sequence.

A growing body of research on these "epigenetic" changes are leading geneticists to rethink the conventional view that all human disease is fundamentally tied to DNA sequence variation (changes in the actual sequence of the DNA nucleic acid code of A’s, C’s, G’s and T’s within any given gene).


The DNA within human cells contains the information for roughly 35,000 different proteins that carry out the body’s functions. But not all of these genes are active all of the time. Like switches, epigenetic modifications to proteins surrounding the DNA regulate a given gene’s activity, such that only those that are required in a particular cell are active (switched on). These changes constitute a "memory" of gene activity that can be passed on each time a cell divides.

If these epigenetic modifications do not occur properly, the result can cause some genes to become switched on or off incorrectly, thereby having profound biological consequences. Incorrect epigenetic modifications have been implicated in many human disorders including several types of cancer, birth defects and mental retardation.

"These expression changes are heritable and are not related to sequence changes in the gene that is directly affected", said Dr. Terry Magnuson, Kenan professor of genetics and director of the Carolina Center for Genome Sciences. "Sequencing the human genome will not necessarily lead one to discover why these genes are expressed abnormally."

For example, there is a recent awareness among scientists of a new type of health threat posed by environmental chemicals that can disrupt endocrine signals during critical periods of development through epigenetic alterations. Additionally, researchers studying Rett syndrome (a rare neurological disease) have found that the mutated gene exerts its effect by influencing epigenetic modifications elsewhere in the genome.

A new study, published online in Nature Genetics on Monday (March 10) makes a case for epigenetics by identifying a gene that may be critical for proper epigenetic changes. The new study shows for the first time that the gene called "Eed" is required for the proper epigenetic regulation of a subset of genes that normally show parent of origin expression, known as genome imprinting. Genome imprinting is a phenomenon in which only one copy of specific genes are active, or switched on. Which copy is active depends upon whether they are inherited from the mother or the father.

When Eed is mutated or its function impaired, loss of imprinting can occur - both the maternal and paternal copy become active.

The new work builds on previous research by Magnuson’s group. In that work, Eed was shown to maintain the molecular brakes on the paternal X chromosome, keeping many of its genes inactive, thus preserving female embryo survival. The study team created female mouse embryos that lacked a copy of Eed. As a result, the paternal X chromosome was shut down only temporarily and then came back on with subsequent problems in placental formation.

"Basically, Eed forms a complex of proteins and alters those chromosomal proteins that affect the configuration of the chromosome so as to allow or not allow expression. If this gene, Eed, isn’t functioning properly, the imprint is lost resulting in incorrect activity of specific genes," Magnuson said.

"We learned from the Human Genome Project that in a complex organism like humans, the 35,000 genes must act in concert with one another in many different combinations at many different times," he added. "So understanding how genes are regulated in terms of their expression, how they are turned on and off, and if they are off how they are maintained in that ’off’ state, becomes critical. This study opens up new possibilities for looking into mechanisms responsible for epigenetic alterations in human disorders."

Along with Magnuson, study co-authors are Jesse Mager and Nathan Montgomery, graduate students in the Curriculum in Genetics and Molecular Biology; and Dr. Fernando Pardo-Manuel de Villena, assistant professor of genetics and member of the UNC Lineberger Comprehensive Cancer Center.


The research was funded by the National Institute of Child Health and Human Development, part of the National Institutes of Health.

Note: Media can obtain access to the on-line paper through Katie Goldrick, Nature Publications, at (202) 737-2355. Contact Magnuson at (919) 843-6475 or terry_magnuson@med.unc.edu

School of Medicine contact: Leslie Lang, (919) 843-9687 or llang@med.unc.edu

By LESLIE H. LANG
UNC School Of Medicine


Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>