Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial viruses make cheap easy vaccines

10.03.2003


Genetically altered bacterial viruses appear to be more effective than naked DNA in eliciting an immune response and could be a new strategy for a next generation of vaccines that are easy to produce and store, say researchers from Moredun Research Institute in the United Kingdom.

"In theory, millions of doses can be grown within a matter of days using simple equipment, media and procedures," says John March, one of lead researchers presenting findings at the American Society for Microbiology’s Biodefense Research Meeting.

Bacteriophages are viruses that infect bacteria but not humans. In this particular study, March and his colleagues used a bacteriophage as a vehicle for genes from hepatitis B virus in mice and compared its ability to elicit a protective immune response with a vaccine made of naked DNA. They found that not only could the bacteriophage induce an immune response, the number of bacteriophage they needed was less than 1 percent of the number of pieces of naked DNA required to mount an effective immune response.



Using bacteriophages to deliver vaccine components offers several advantages over vaccination with naked DNA, says March. The DNA is protected inside the protein shell of the virus making it longer lasting and easier to store. In addition, bacteriophages have a large cloning capacity, making large-scale production cheap, easy and extremely rapid – important attributes considering the current bioterrorism threat when sudden demands may be placed on vaccine stocks.


The American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health professionals. Its mission is to promote research and training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment. Further information on the ASM Biodefense Research Meeting can be found online at www.asmbiodefense.org.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmbiodefense.org.
http://www.asmusa.org/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>