Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pheromone Receptors Need "Escorts"

07.03.2003


Howard Hughes Medical Institute (HHMI) researches and their colleagues have discovered that escort molecules are required to usher pheromone receptors to the surface of sensory neurons where they are needed to translate chemical cues.

In an interesting twist, the researchers found that the escort molecules belong to a family of proteins, called the major histocompatibility complex (MHC), which plays an important role in the immune system. The researchers speculate that in addition to being escort molecules, the MHC proteins might actively modulate an animal’s response to pheromones. Modulation of pheromone activity might aid in the recognition of other animals.

The studies in mice add “a novel and unexpected layer of complexity to the process of pheromone detection,” the researchers wrote in an article published in the March 7, 2003, issue of the journal Cell. The article was published online on March 4, 2003. The findings also suggest that, similarly, escort molecules, although of a different kind, may be important in smell and taste receptors.



HHMI investigators Catherine Dulac at Harvard University and Kirsten Fischer Lindahl at the University of Texas Southwestern Medical Center led the research teams that collaborated on the studies.

The pheromone communication system, which is found in a wide range of mammals, involves detection of chemical odorants released by animals. Detection of pheromones takes place in a specialized structure, called the vomeronasal organ (VNO). Although the VNO resides in the nasal cavity, the pheromone sensory system is distinct from the sense of smell, as are the chemical receptors involved. In animals possessing a pheromone sensory system — including mice, dogs, cats and elephants — the system governs a range of genetically preprogrammed mating, social ranking, maternal, and territorial defense behaviors.

According to Dulac, untangling the complexity of the pheromone system has been a daunting task for researchers. “For example, if you compare the number of receptors, which ranges between two hundred and four hundred, and the number of behaviors they trigger, which ranges up to a dozen, there is a huge discrepancy,” she said. “So, you can either postulate that there are hundreds of behaviors not yet described, or more likely a given behavior involves the activation of multiple receptors.”

To begin sorting out the functions of the multitude of pheromone receptors, Dulac and her colleagues decided to study a subpopulation of sensory neurons in the VNO. The researchers knew they could distinguish neurons that expressed one family of receptors, called V2R, from another family, called V1R, so they used a technique called “subtractive differential screening of single cell cDNA libraries” to compare the genes that are switched on in neurons bearing the two different types of pheromone receptor.

Their comparisons — as well as sequencing of the discovered genes and searches of gene databases — yielded evidence that two families of MHC genes called M1 and M10 were preferentially activated in these neurons, said Dulac. The finding was surprising because MHC proteins commonly function on the surface of immune cells to present foreign proteins to the immune system to trigger destruction of invading pathogens. The M10 proteins found in the VNO were different in structure and obviously in function from other such molecules.

Dulac’s and Fischer Lindahl’s research teams set out to explore the structure and function of the M10 type of MHC proteins that the genes produced. Their studies revealed that the MHC genes were exclusively expressed in the VNO and in no other tissue. And within the VNO, they were only expressed in V2R-positive VNO neurons. The researchers observed that each type of V2R receptor apparently had a specific type of M10 protein associated with it.

“So, we found that there is a population of neurons in which each neuron expresses only one type of pheromone receptor gene,” said Dulac. “We also were able to show that these individual neurons express only one type of M10 gene. This told us there was some type of logic in that association.”

Additional studies showed that the M10 gene was activated only after birth, which suggested that M10 only functions in pheromone sensing in the adult animal. The researchers showed that the M10 proteins, like the pheromone receptor proteins, were localized to the tips of neurons, called dendrites, where chemical reception takes place.

Their studies showed that the M10 protein, as well as an “accessory” molecule, beta2-microglobulin, that accompanies such M10 proteins, directly interacted with the pheromone receptor molecule. Finally, they found that the M10 protein and its accessory molecule were necessary for the pheromone receptor to reach the surface of the neuron.

The researchers also explored the effects of knocking out the key M10 accessory molecule, beta2-microglobulin, in mice. They found that the beta2-microglobulin-knockout male mice lacked V2R receptors in their VNOs and also failed to exhibit the normal aggressive behavior toward other males.

According to Dulac, the scientists’ findings show that M10 plays a crucial escort role for pheromone receptors, but it might well have a modulatory role. “The fact that the receptor needs M10 to go to the surface, doesn’t prove it’s the exclusive role of the protein,” she said. “We do know that each time researchers have described an association between a particular receptor and another molecule at the cell surface, it has always been the case that the specificity of the original receptor is being modified. So, we have found new molecular players, if you will, in the game of pheromone detection.”

Dulac said that the newly discovered MHC molecule involvement could have important implications for understanding the pheromone system. “This association opens all sorts of possibilities for the mechanism of pheromone detection, because we know the animal can modulate its behavior according to the sex of another animal, its genetic background and the elements that make up the identity of an animal.”

The discovery of escort molecules in the pheromone system could have implications for understanding the molecular machinery involved in smell and taste, Dulac said. Researchers knew that in cell cultures, olfactory and taste receptors seemed to require additional molecules to reach the surfaces of cells. That observation hints at the need for still-undiscovered escort molecules for those receptors, as well as for the V1R-expressing class of pheromone receptors, she said.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/dulac2.html

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>