Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking The Secrets Of Evolution

07.03.2003


Exactly fifty years ago, Watson and Crick revealed the structure of DNA, unleashing a scientific revolution. On the anniversary of that momentous discovery, the world’s leading science journal, Nature, will publish new and groundbreaking genetic research by Bangor University scientist, Dr. Isabelle Colson. Isabelle is an expert in evolutionary biology, the study of how life evolves, and for 18 months she was an invaluable part of a Manchester-based team studying mutation in yeast - a seemingly simple organism, but one that can shed light on many aspects of evolution. Isabelle’s group were the first scientists ever to see, actually happening, one of the ways yeasts can mutate into new species. On March 6th, Nature will reveal how Isabelle and her colleagues unlocked the secrets of one of evolution’s key mechanisms.



Scientists had long suspected that they knew how yeasts, like other organisms, mutate and evolve into new species - but they’d never seen it in action. Isabelle and her team took a small yeast with a big name, Saccharomyces ‘sensu stricto’, and actually caused it to mutate by shuffling around large chunks of genetic information. This swapping of information, or ‘translocation’, occurs naturally, and by learning how to mimic the process, scientists are closer to understanding how one species changes into another. This is one of the key studies of evolutionary biology, with important practical implications, like understanding how bacteria evolve antibiotic resistance.

So how does the ‘translocation’ lead to new species of yeast? Just as all newspaper stories are made of words, all life on Earth is made of genes - little pieces of genetic information that form the ‘blueprints’ for life. And, just as words naturally come in paragraphs, collections of genes are grouped together into bigger units called chromosomes. When the scientists cause translocation, entire chunks of one chromosome swap
places with chunks of another chromosome, almost like sentences switching place from one paragraph to another. And, just as you would expect that swap to radically change the meaning of the paragraphs in


your newspaper, this genetic translocation dramatically changes the ‘meaning’ of the yeast’s genetic code, even creating new species in the right circumstances.

For years, Isabelle has been passionate about the study of evolution. “When I was 7” she notes, “I wanted to be a palaeontologist. I was obsessed with dinosaurs, and it all started from there.” Having shone a torch into the inner workings of evolution itself, Isabelle would probably agree that she’s come a long way.

Elinor Elis-Williams | alfa

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>