Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA chemists report new method for producing carbon nanoscrolls, an alternative to nanotubes

06.03.2003


UCLA chemists report in the Feb. 28 issue of Science a room-temperature chemical method for producing a new form of carbon called carbon nanoscrolls. Nanoscrolls are closely related to the much touted carbon nanotubes -- which may have numerous industrial applications -- but have significant advantages over them, said Lisa Viculis and Julia Mack, the lead authors of the Science article and graduate students in the laboratory of Richard B. Kaner, UCLA professor of chemistry and biochemistry.



"If nanotubes can live up to all their predicted promise, then we believe that we have a method for making analogous materials for a fraction of the cost," Mack said.

Nanotubes are pure carbon sheets in a tubular form, capped at each end. Viculis and Mack’s carbon nanoscrolls are also pure carbon but the sheets are curled up, without the caps on the ends, potentially allowing access to significant additional surface area. While nanotubes are normally made at high temperatures, nanoscrolls can be produced at room temperature.


"Our method involves scrolling sheets of graphite, which could give us a much higher surface area," Viculis said.

"If we can access the entire surface area on both sides of the carbon sheets -- unlike with carbon nanotubes, where only the outside surface is accessible -- then we could adsorb twice the amount of hydrogen -- an enormous increase," Mack said, "improving on hydrogen storage for fuel (an alternative to fossil fuels)."

"Nanoscrolls can be made by a relatively inexpensive and scalable process at low temperatures," Mack said. "Our starting materials are just graphite and potassium metal. The idea is beautiful in its simplicity."

"Carbon surfaces are known to adsorb hydrogen. A difficulty with using hydrogen as a fuel source for cars, instead of gas, is obtaining a material capable of storing enough hydrogen to make the approach feasible," Viculis said.

"Carbon nanoscrolls could make pollution-free, hydrogen-powered cars better than they would otherwise be," said Kaner, the third co-author on the Science paper. "This research is a good start. We have a long way to go. For this approach to work well, we need to get down to individual carbon layers, and we are not there yet. On average, the nanoscrolls are 40 layers thick. We have not yet realized the full surface area or all the properties we are after. The challenge is to reduce the nanoscrolls to individual layers. We have many good leads, and have started new collaborations."

The research may lead to numerous applications.

"For electronic applications, nanotubes may work well," Kaner said. "For applications where high surface area is important -- such as hydrogen storage, or energy storage in super-capacitors -- these nanoscrolls may be better."

Other possible applications for nanoscrolls, Kaner said, include lightweight but strong materials for planes and cars, and improved graphite-based tennis rackets and golf clubs.

Kaner, Viculis and Mack are collaborating on mechanical properties and applications with H. Thomas Hahn, UCLA’s Raytheon Professor of Manufacturing Engineering, and chair of the UCLA Department of Mechanical and Aerospace Engineering.

"We see this research as a jumping-off point," Viculis said. "We believe it will give people ideas. Colleagues are finding us for collaborations, in engineering as well as chemistry."


Viculis, Mack and Kaner, who have been working on this project together for more than two years, have continued to make significant progress even in the time since they submitted the Science paper.


The research is funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and UCLA’s Academic Senate.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>