Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA chemists report new method for producing carbon nanoscrolls, an alternative to nanotubes


UCLA chemists report in the Feb. 28 issue of Science a room-temperature chemical method for producing a new form of carbon called carbon nanoscrolls. Nanoscrolls are closely related to the much touted carbon nanotubes -- which may have numerous industrial applications -- but have significant advantages over them, said Lisa Viculis and Julia Mack, the lead authors of the Science article and graduate students in the laboratory of Richard B. Kaner, UCLA professor of chemistry and biochemistry.

"If nanotubes can live up to all their predicted promise, then we believe that we have a method for making analogous materials for a fraction of the cost," Mack said.

Nanotubes are pure carbon sheets in a tubular form, capped at each end. Viculis and Mack’s carbon nanoscrolls are also pure carbon but the sheets are curled up, without the caps on the ends, potentially allowing access to significant additional surface area. While nanotubes are normally made at high temperatures, nanoscrolls can be produced at room temperature.

"Our method involves scrolling sheets of graphite, which could give us a much higher surface area," Viculis said.

"If we can access the entire surface area on both sides of the carbon sheets -- unlike with carbon nanotubes, where only the outside surface is accessible -- then we could adsorb twice the amount of hydrogen -- an enormous increase," Mack said, "improving on hydrogen storage for fuel (an alternative to fossil fuels)."

"Nanoscrolls can be made by a relatively inexpensive and scalable process at low temperatures," Mack said. "Our starting materials are just graphite and potassium metal. The idea is beautiful in its simplicity."

"Carbon surfaces are known to adsorb hydrogen. A difficulty with using hydrogen as a fuel source for cars, instead of gas, is obtaining a material capable of storing enough hydrogen to make the approach feasible," Viculis said.

"Carbon nanoscrolls could make pollution-free, hydrogen-powered cars better than they would otherwise be," said Kaner, the third co-author on the Science paper. "This research is a good start. We have a long way to go. For this approach to work well, we need to get down to individual carbon layers, and we are not there yet. On average, the nanoscrolls are 40 layers thick. We have not yet realized the full surface area or all the properties we are after. The challenge is to reduce the nanoscrolls to individual layers. We have many good leads, and have started new collaborations."

The research may lead to numerous applications.

"For electronic applications, nanotubes may work well," Kaner said. "For applications where high surface area is important -- such as hydrogen storage, or energy storage in super-capacitors -- these nanoscrolls may be better."

Other possible applications for nanoscrolls, Kaner said, include lightweight but strong materials for planes and cars, and improved graphite-based tennis rackets and golf clubs.

Kaner, Viculis and Mack are collaborating on mechanical properties and applications with H. Thomas Hahn, UCLA’s Raytheon Professor of Manufacturing Engineering, and chair of the UCLA Department of Mechanical and Aerospace Engineering.

"We see this research as a jumping-off point," Viculis said. "We believe it will give people ideas. Colleagues are finding us for collaborations, in engineering as well as chemistry."

Viculis, Mack and Kaner, who have been working on this project together for more than two years, have continued to make significant progress even in the time since they submitted the Science paper.

The research is funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and UCLA’s Academic Senate.

Stuart Wolpert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>