Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA chemists report new method for producing carbon nanoscrolls, an alternative to nanotubes

06.03.2003


UCLA chemists report in the Feb. 28 issue of Science a room-temperature chemical method for producing a new form of carbon called carbon nanoscrolls. Nanoscrolls are closely related to the much touted carbon nanotubes -- which may have numerous industrial applications -- but have significant advantages over them, said Lisa Viculis and Julia Mack, the lead authors of the Science article and graduate students in the laboratory of Richard B. Kaner, UCLA professor of chemistry and biochemistry.



"If nanotubes can live up to all their predicted promise, then we believe that we have a method for making analogous materials for a fraction of the cost," Mack said.

Nanotubes are pure carbon sheets in a tubular form, capped at each end. Viculis and Mack’s carbon nanoscrolls are also pure carbon but the sheets are curled up, without the caps on the ends, potentially allowing access to significant additional surface area. While nanotubes are normally made at high temperatures, nanoscrolls can be produced at room temperature.


"Our method involves scrolling sheets of graphite, which could give us a much higher surface area," Viculis said.

"If we can access the entire surface area on both sides of the carbon sheets -- unlike with carbon nanotubes, where only the outside surface is accessible -- then we could adsorb twice the amount of hydrogen -- an enormous increase," Mack said, "improving on hydrogen storage for fuel (an alternative to fossil fuels)."

"Nanoscrolls can be made by a relatively inexpensive and scalable process at low temperatures," Mack said. "Our starting materials are just graphite and potassium metal. The idea is beautiful in its simplicity."

"Carbon surfaces are known to adsorb hydrogen. A difficulty with using hydrogen as a fuel source for cars, instead of gas, is obtaining a material capable of storing enough hydrogen to make the approach feasible," Viculis said.

"Carbon nanoscrolls could make pollution-free, hydrogen-powered cars better than they would otherwise be," said Kaner, the third co-author on the Science paper. "This research is a good start. We have a long way to go. For this approach to work well, we need to get down to individual carbon layers, and we are not there yet. On average, the nanoscrolls are 40 layers thick. We have not yet realized the full surface area or all the properties we are after. The challenge is to reduce the nanoscrolls to individual layers. We have many good leads, and have started new collaborations."

The research may lead to numerous applications.

"For electronic applications, nanotubes may work well," Kaner said. "For applications where high surface area is important -- such as hydrogen storage, or energy storage in super-capacitors -- these nanoscrolls may be better."

Other possible applications for nanoscrolls, Kaner said, include lightweight but strong materials for planes and cars, and improved graphite-based tennis rackets and golf clubs.

Kaner, Viculis and Mack are collaborating on mechanical properties and applications with H. Thomas Hahn, UCLA’s Raytheon Professor of Manufacturing Engineering, and chair of the UCLA Department of Mechanical and Aerospace Engineering.

"We see this research as a jumping-off point," Viculis said. "We believe it will give people ideas. Colleagues are finding us for collaborations, in engineering as well as chemistry."


Viculis, Mack and Kaner, who have been working on this project together for more than two years, have continued to make significant progress even in the time since they submitted the Science paper.


The research is funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and UCLA’s Academic Senate.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>