Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA chemists report new method for producing carbon nanoscrolls, an alternative to nanotubes

06.03.2003


UCLA chemists report in the Feb. 28 issue of Science a room-temperature chemical method for producing a new form of carbon called carbon nanoscrolls. Nanoscrolls are closely related to the much touted carbon nanotubes -- which may have numerous industrial applications -- but have significant advantages over them, said Lisa Viculis and Julia Mack, the lead authors of the Science article and graduate students in the laboratory of Richard B. Kaner, UCLA professor of chemistry and biochemistry.



"If nanotubes can live up to all their predicted promise, then we believe that we have a method for making analogous materials for a fraction of the cost," Mack said.

Nanotubes are pure carbon sheets in a tubular form, capped at each end. Viculis and Mack’s carbon nanoscrolls are also pure carbon but the sheets are curled up, without the caps on the ends, potentially allowing access to significant additional surface area. While nanotubes are normally made at high temperatures, nanoscrolls can be produced at room temperature.


"Our method involves scrolling sheets of graphite, which could give us a much higher surface area," Viculis said.

"If we can access the entire surface area on both sides of the carbon sheets -- unlike with carbon nanotubes, where only the outside surface is accessible -- then we could adsorb twice the amount of hydrogen -- an enormous increase," Mack said, "improving on hydrogen storage for fuel (an alternative to fossil fuels)."

"Nanoscrolls can be made by a relatively inexpensive and scalable process at low temperatures," Mack said. "Our starting materials are just graphite and potassium metal. The idea is beautiful in its simplicity."

"Carbon surfaces are known to adsorb hydrogen. A difficulty with using hydrogen as a fuel source for cars, instead of gas, is obtaining a material capable of storing enough hydrogen to make the approach feasible," Viculis said.

"Carbon nanoscrolls could make pollution-free, hydrogen-powered cars better than they would otherwise be," said Kaner, the third co-author on the Science paper. "This research is a good start. We have a long way to go. For this approach to work well, we need to get down to individual carbon layers, and we are not there yet. On average, the nanoscrolls are 40 layers thick. We have not yet realized the full surface area or all the properties we are after. The challenge is to reduce the nanoscrolls to individual layers. We have many good leads, and have started new collaborations."

The research may lead to numerous applications.

"For electronic applications, nanotubes may work well," Kaner said. "For applications where high surface area is important -- such as hydrogen storage, or energy storage in super-capacitors -- these nanoscrolls may be better."

Other possible applications for nanoscrolls, Kaner said, include lightweight but strong materials for planes and cars, and improved graphite-based tennis rackets and golf clubs.

Kaner, Viculis and Mack are collaborating on mechanical properties and applications with H. Thomas Hahn, UCLA’s Raytheon Professor of Manufacturing Engineering, and chair of the UCLA Department of Mechanical and Aerospace Engineering.

"We see this research as a jumping-off point," Viculis said. "We believe it will give people ideas. Colleagues are finding us for collaborations, in engineering as well as chemistry."


Viculis, Mack and Kaner, who have been working on this project together for more than two years, have continued to make significant progress even in the time since they submitted the Science paper.


The research is funded by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Research and UCLA’s Academic Senate.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>