Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutants from a lowly weed may solve maladies

05.03.2003


Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist, examines an Arabidopsis plant in his lab at Texas A&M University. Mutants of the plant, a common weed, may help scientists find answers to a wide variety of maladies s from salt stress in plants to HIV in humans. (TAES photo by Kathleen Phillips)


Mutants from a lowly weed. That’s where many solutions to maladies – from salt stress in plants to HIV in humans – may lie in wait for scientists to discover.

"I look for mutants. I take a sick plant and find out what’s wrong," said Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist.

It’s the Arabidopsis plant, a common weed, that attracts Koiwa and other researchers because of its simple genetic makeup. Scientists have looked at every nook and cranny of the weed’s DNA code.



The order of those code sequences known as A, C, T and G is what makes a human genetically both different from and similar to, say, the Arabidopsis, Koiwa noted. Because the Arabidopsis code sequence is known, he said, researchers are beginning to understand how particular genes work within the segments.

That’s where mutants help. Researchers can simply "knock out" a particular portion of the Arabidopsis, then grow the mutated plant to see how it reacts to various conditions compared to "normal" Arabidopsis plants.

In Koiwa’s case, the condition of choice is salt stress.

High salt levels are found in one third of the world’s cropland and that means reduced yields, according to a report by Purdue University. Before coming to Texas A&M University in 2002, Koiwa was part of a Purdue team that discovered the gene and protein, known by scientists as AtCPLs and AtHKT1. AtCPLs tune plant gene expression under stressful environments, and AtHKT1 allows salt to enter plants.

Until the AtHKT1 discovery, no one knew how sodium gets into plants, Purdue reported.

With that information and wide collaboration, Koiwa hopes to steer continued work in his Texas lab around a mutant Arabidopsis plant which is much more sensitive to salt.

"With Arabidopsis, we know that there is a mechanism to ’pump out’ salt from a cell, or move it from a critical part to a less critical part," Koiwa said. "We need to understand more about the molecular reasons the plant is sensitive to salt than its osmosis, or ability to move salt around."

Koiwa’s current focus is natural ability of two different Arabidopsis varieties to move around salt which "may answer many questions as to why some crops are more salt sensitive than others," he said.

And similar work may yield answers from plants for HIV research in humans, Koiwa added.

He said mutant studies have revealed genes of four "CTD phosphatase-like regulators (or AtCPLs)" in plants, whereas humans have only one.

Targeting CTD, in humans, is a proposed defense mechanism to prevent HIV from making its parts, thus multiplying itself, he explained.

Koiwa already has located two Arabidopsis mutants for AtCPL genes, and different behavior of the two mutants implies that each have different functions.

"So we have to ask, why does a plant have four and a human only one," he said. "There must be a reason, and there must be a reason that the additional regulators behave differently."

He said future research may lead to transferring the phenomena in plants in vitro or in transgenic plants to see if any of the four plant CTDs are more sensitive or more resistant to the HIV protein known as TAT.

Writer: Kathleen Phillips, (979) 845-2872,ka-phillips@tamu.edu
Contact: Hisashi Koiwa, (979) 845-5341,koiwa@neo.tamu.edu

Kathleen Phillips | EurekAlert!
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/Mar0303a.htm

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>