Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutants from a lowly weed may solve maladies

05.03.2003


Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist, examines an Arabidopsis plant in his lab at Texas A&M University. Mutants of the plant, a common weed, may help scientists find answers to a wide variety of maladies s from salt stress in plants to HIV in humans. (TAES photo by Kathleen Phillips)


Mutants from a lowly weed. That’s where many solutions to maladies – from salt stress in plants to HIV in humans – may lie in wait for scientists to discover.

"I look for mutants. I take a sick plant and find out what’s wrong," said Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist.

It’s the Arabidopsis plant, a common weed, that attracts Koiwa and other researchers because of its simple genetic makeup. Scientists have looked at every nook and cranny of the weed’s DNA code.



The order of those code sequences known as A, C, T and G is what makes a human genetically both different from and similar to, say, the Arabidopsis, Koiwa noted. Because the Arabidopsis code sequence is known, he said, researchers are beginning to understand how particular genes work within the segments.

That’s where mutants help. Researchers can simply "knock out" a particular portion of the Arabidopsis, then grow the mutated plant to see how it reacts to various conditions compared to "normal" Arabidopsis plants.

In Koiwa’s case, the condition of choice is salt stress.

High salt levels are found in one third of the world’s cropland and that means reduced yields, according to a report by Purdue University. Before coming to Texas A&M University in 2002, Koiwa was part of a Purdue team that discovered the gene and protein, known by scientists as AtCPLs and AtHKT1. AtCPLs tune plant gene expression under stressful environments, and AtHKT1 allows salt to enter plants.

Until the AtHKT1 discovery, no one knew how sodium gets into plants, Purdue reported.

With that information and wide collaboration, Koiwa hopes to steer continued work in his Texas lab around a mutant Arabidopsis plant which is much more sensitive to salt.

"With Arabidopsis, we know that there is a mechanism to ’pump out’ salt from a cell, or move it from a critical part to a less critical part," Koiwa said. "We need to understand more about the molecular reasons the plant is sensitive to salt than its osmosis, or ability to move salt around."

Koiwa’s current focus is natural ability of two different Arabidopsis varieties to move around salt which "may answer many questions as to why some crops are more salt sensitive than others," he said.

And similar work may yield answers from plants for HIV research in humans, Koiwa added.

He said mutant studies have revealed genes of four "CTD phosphatase-like regulators (or AtCPLs)" in plants, whereas humans have only one.

Targeting CTD, in humans, is a proposed defense mechanism to prevent HIV from making its parts, thus multiplying itself, he explained.

Koiwa already has located two Arabidopsis mutants for AtCPL genes, and different behavior of the two mutants implies that each have different functions.

"So we have to ask, why does a plant have four and a human only one," he said. "There must be a reason, and there must be a reason that the additional regulators behave differently."

He said future research may lead to transferring the phenomena in plants in vitro or in transgenic plants to see if any of the four plant CTDs are more sensitive or more resistant to the HIV protein known as TAT.

Writer: Kathleen Phillips, (979) 845-2872,ka-phillips@tamu.edu
Contact: Hisashi Koiwa, (979) 845-5341,koiwa@neo.tamu.edu

Kathleen Phillips | EurekAlert!
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/Mar0303a.htm

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>