Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutants from a lowly weed may solve maladies

05.03.2003


Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist, examines an Arabidopsis plant in his lab at Texas A&M University. Mutants of the plant, a common weed, may help scientists find answers to a wide variety of maladies s from salt stress in plants to HIV in humans. (TAES photo by Kathleen Phillips)


Mutants from a lowly weed. That’s where many solutions to maladies – from salt stress in plants to HIV in humans – may lie in wait for scientists to discover.

"I look for mutants. I take a sick plant and find out what’s wrong," said Dr. Hisashi Koiwa, Texas Agricultural Experiment Station horticulturist.

It’s the Arabidopsis plant, a common weed, that attracts Koiwa and other researchers because of its simple genetic makeup. Scientists have looked at every nook and cranny of the weed’s DNA code.



The order of those code sequences known as A, C, T and G is what makes a human genetically both different from and similar to, say, the Arabidopsis, Koiwa noted. Because the Arabidopsis code sequence is known, he said, researchers are beginning to understand how particular genes work within the segments.

That’s where mutants help. Researchers can simply "knock out" a particular portion of the Arabidopsis, then grow the mutated plant to see how it reacts to various conditions compared to "normal" Arabidopsis plants.

In Koiwa’s case, the condition of choice is salt stress.

High salt levels are found in one third of the world’s cropland and that means reduced yields, according to a report by Purdue University. Before coming to Texas A&M University in 2002, Koiwa was part of a Purdue team that discovered the gene and protein, known by scientists as AtCPLs and AtHKT1. AtCPLs tune plant gene expression under stressful environments, and AtHKT1 allows salt to enter plants.

Until the AtHKT1 discovery, no one knew how sodium gets into plants, Purdue reported.

With that information and wide collaboration, Koiwa hopes to steer continued work in his Texas lab around a mutant Arabidopsis plant which is much more sensitive to salt.

"With Arabidopsis, we know that there is a mechanism to ’pump out’ salt from a cell, or move it from a critical part to a less critical part," Koiwa said. "We need to understand more about the molecular reasons the plant is sensitive to salt than its osmosis, or ability to move salt around."

Koiwa’s current focus is natural ability of two different Arabidopsis varieties to move around salt which "may answer many questions as to why some crops are more salt sensitive than others," he said.

And similar work may yield answers from plants for HIV research in humans, Koiwa added.

He said mutant studies have revealed genes of four "CTD phosphatase-like regulators (or AtCPLs)" in plants, whereas humans have only one.

Targeting CTD, in humans, is a proposed defense mechanism to prevent HIV from making its parts, thus multiplying itself, he explained.

Koiwa already has located two Arabidopsis mutants for AtCPL genes, and different behavior of the two mutants implies that each have different functions.

"So we have to ask, why does a plant have four and a human only one," he said. "There must be a reason, and there must be a reason that the additional regulators behave differently."

He said future research may lead to transferring the phenomena in plants in vitro or in transgenic plants to see if any of the four plant CTDs are more sensitive or more resistant to the HIV protein known as TAT.

Writer: Kathleen Phillips, (979) 845-2872,ka-phillips@tamu.edu
Contact: Hisashi Koiwa, (979) 845-5341,koiwa@neo.tamu.edu

Kathleen Phillips | EurekAlert!
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/Mar0303a.htm

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>