Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution boosted anti-cancer prowess of a primordial gene

04.03.2003


Arf gene became more effective in stemming cell growth when it joined forces with p53



Researchers at St. Jude Children’s Research Hospital have looked back in evolutionary time and identified what may be a gene that was once only moderately effective in slowing down cellular reproduction, until it linked up with a more efficient set of genes to create a powerful anti-cancer response.

The gene, called Arf, was already known to have cancer-suppressing activity. Arf responds to cancer-causing environments by activating the well-known tumor suppressor gene, p53. In turn, p53 activates a battery of other genes to stop cell growth or, in extreme cases, to trigger cell death in response to a variety of harmful conditions, such as DNA damage or activation of oncogenes (cancer-causing genes). In fact, loss of Arf or p53 is a common event in many human cancers.


But the new results suggest that Arf plays a role far older in evolutionary terms than its more familiar job of stimulating p53 to prevent cancer. The St. Jude findings suggest that Arf originally evolved to slow the cell’s metabolism and growth by limiting production of ribosomes. Ribosomes, made up of RNA (de-coded DNA) and proteins, guide the production of all other cellular proteins according to the genetic code. The new work shows that Arf interferes with production of the RNA components of ribosomes in order to exert some control of protein production and cell growth.

"About 80 percent of a cell’s RNA is tied up in ribosomes," said Charles Sherr, M.D., Ph.D., a member of the Genetics & Tumor Cell Biology Department at St. Jude and a Howard Hughes Medical Institute investigator. "In fact, producing ribosomes is practically what cells do for a living. It’s their major energy-consuming activity. So it makes sense that any limitation on ribosome production would slow cell growth."

Sherr’s team believes that Arf counteracts excessive growth-promoting stimuli by interfering with ribosome production. But inhibiting ribosomal production isn’t a particularly efficient way to control cell growth. "On the other hand, p53 activates many growth suppressive genes," Sherr said. "So Arf appears to have become more efficient because, by evolving a way to activate p53, it was able to extend its reach and inhibit many more cellular responses apart from ribosome synthesis."

Sherr is senior author of a report on these findings published in the February 2003 issue of Molecular Cell. Other authors of the study include Masataka Sugimoto, Mei-Ling Kuo and Martine F. Roussel, all of whom are St. Jude investigators.

The group studied the role of Arf in controlling ribosomal RNA production using a variety of mouse cells. The effects were then examined by inserting Arf genes into harmless viruses used to infect the cells, and by tracking the levels of newly synthesized RNA in the cells under various experimental conditions. The exact mechanism by which Arf interferes with ribosomal RNA synthesis remains unclear and is a subject for future research, according to Sherr.



This work was supported by the Howard Hughes Medical Institute, an NIH Cancer Center Core Grant to St. Jude Children’s Research Hospital and by ALSAC, the fund-raising arm of St. Jude.

About St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>