Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dartmouth Medical School geneticists discover new role for antisense RNA


Dartmouth Medical School geneticists studying the biological clock have opened yet another window into the role of an unusual form of RNA known as antisense that blocks the messages of protein-encoding genes.

They found that antisense RNA appears to regulate core timing genes in the circadaian clock that drives the 24-hour light-dark cycle of Neurospora, a model organism better known as bread mold.

The results are reported in the February 27 Nature by Drs. Jennifer Loros and Jay C. Dunlap, both DMS professors, and Susan K. Crosthwaite, formerly a postdoctoral fellow at DMS, and Cas Kramer, both of the University of Manchester, England.

Messenger RNA, which has a single-stranded sequence of nucleotides, is called "sense" because it can be decoded to produce a gene product (a protein). Like DNA, this mRNA can form duplexes with a second strand of RNA whose base sequence is complementary to the first strand. The second strand is called the antisense strand because its nucleotide sequence is the complement of "sense" message. When mRNA forms a duplex with a complementary antisense RNA sequence, the message translation is turned off so the sense strand can no longer be decoded to yield a protein product.

As scientists identify more antisense RNAs, they are beginning to realize these might affect a wide variety of processes. The recent findings, write the authors, "provide an unexpected link between antisense RNA and circadian timing."

Studying the development of spores in the bread mold Neurospora, Dunlap and Loros have teased apart the molecular gears that form the basis of most living clocks. Light and dark cycles reset the clocks, they found, the way turning the hands of a clock does. The clock mechanism, a biological oscillator, keeps time through the delicately balanced interplay of the Neurospora clock genes and proteins in a complex of feedback loops.

"We found a long RNA antisense transcript that arises from the frequency gene, known to encode factors important for the operation of the circadian clock in Neurospora," says Dunlap. "The sense transcript encodes proteins that are involved in the feedback loop that is the oscillator in the clock. The antisense transcript runs in the opposite direction, and apparently does not encode a protein, so its actual role is unknown at present. It may simply bock translation, or it may destabilize the sense message. Antisense transcripts are already known, but usually they are quite small, on the order of 20 to 25 bases. This one is quite large, nearly 5,000 bases."

In normal bread mold strains living in the dark, levels of antisense frequency transcripts cycle with respect to the amount of sense frequency transcripts, and they are inducible by light, the researchers determined. However, in strains mutated to abolish induction of antisense frequency RNA by light, the internal clock time was delayed, and resetting of the clock by light was altered.

If similar environmental factors regulate both sense and antisense transcripts, the authors suggest, a role for antisense frequency RNA might be to confer the ability to keep accurate time by limiting the clock response to extremes in the environment. Likewise other antisense RNAs might be involved in maintaining internal stability in other organisms.

DMS Communications | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>