Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth Medical School geneticists discover new role for antisense RNA

28.02.2003


Dartmouth Medical School geneticists studying the biological clock have opened yet another window into the role of an unusual form of RNA known as antisense that blocks the messages of protein-encoding genes.



They found that antisense RNA appears to regulate core timing genes in the circadaian clock that drives the 24-hour light-dark cycle of Neurospora, a model organism better known as bread mold.

The results are reported in the February 27 Nature by Drs. Jennifer Loros and Jay C. Dunlap, both DMS professors, and Susan K. Crosthwaite, formerly a postdoctoral fellow at DMS, and Cas Kramer, both of the University of Manchester, England.


Messenger RNA, which has a single-stranded sequence of nucleotides, is called "sense" because it can be decoded to produce a gene product (a protein). Like DNA, this mRNA can form duplexes with a second strand of RNA whose base sequence is complementary to the first strand. The second strand is called the antisense strand because its nucleotide sequence is the complement of "sense" message. When mRNA forms a duplex with a complementary antisense RNA sequence, the message translation is turned off so the sense strand can no longer be decoded to yield a protein product.

As scientists identify more antisense RNAs, they are beginning to realize these might affect a wide variety of processes. The recent findings, write the authors, "provide an unexpected link between antisense RNA and circadian timing."

Studying the development of spores in the bread mold Neurospora, Dunlap and Loros have teased apart the molecular gears that form the basis of most living clocks. Light and dark cycles reset the clocks, they found, the way turning the hands of a clock does. The clock mechanism, a biological oscillator, keeps time through the delicately balanced interplay of the Neurospora clock genes and proteins in a complex of feedback loops.

"We found a long RNA antisense transcript that arises from the frequency gene, known to encode factors important for the operation of the circadian clock in Neurospora," says Dunlap. "The sense transcript encodes proteins that are involved in the feedback loop that is the oscillator in the clock. The antisense transcript runs in the opposite direction, and apparently does not encode a protein, so its actual role is unknown at present. It may simply bock translation, or it may destabilize the sense message. Antisense transcripts are already known, but usually they are quite small, on the order of 20 to 25 bases. This one is quite large, nearly 5,000 bases."

In normal bread mold strains living in the dark, levels of antisense frequency transcripts cycle with respect to the amount of sense frequency transcripts, and they are inducible by light, the researchers determined. However, in strains mutated to abolish induction of antisense frequency RNA by light, the internal clock time was delayed, and resetting of the clock by light was altered.

If similar environmental factors regulate both sense and antisense transcripts, the authors suggest, a role for antisense frequency RNA might be to confer the ability to keep accurate time by limiting the clock response to extremes in the environment. Likewise other antisense RNAs might be involved in maintaining internal stability in other organisms.

DMS Communications | EurekAlert!
Further information:
http://www.dartmouth.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>