Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth Medical School geneticists discover new role for antisense RNA

28.02.2003


Dartmouth Medical School geneticists studying the biological clock have opened yet another window into the role of an unusual form of RNA known as antisense that blocks the messages of protein-encoding genes.



They found that antisense RNA appears to regulate core timing genes in the circadaian clock that drives the 24-hour light-dark cycle of Neurospora, a model organism better known as bread mold.

The results are reported in the February 27 Nature by Drs. Jennifer Loros and Jay C. Dunlap, both DMS professors, and Susan K. Crosthwaite, formerly a postdoctoral fellow at DMS, and Cas Kramer, both of the University of Manchester, England.


Messenger RNA, which has a single-stranded sequence of nucleotides, is called "sense" because it can be decoded to produce a gene product (a protein). Like DNA, this mRNA can form duplexes with a second strand of RNA whose base sequence is complementary to the first strand. The second strand is called the antisense strand because its nucleotide sequence is the complement of "sense" message. When mRNA forms a duplex with a complementary antisense RNA sequence, the message translation is turned off so the sense strand can no longer be decoded to yield a protein product.

As scientists identify more antisense RNAs, they are beginning to realize these might affect a wide variety of processes. The recent findings, write the authors, "provide an unexpected link between antisense RNA and circadian timing."

Studying the development of spores in the bread mold Neurospora, Dunlap and Loros have teased apart the molecular gears that form the basis of most living clocks. Light and dark cycles reset the clocks, they found, the way turning the hands of a clock does. The clock mechanism, a biological oscillator, keeps time through the delicately balanced interplay of the Neurospora clock genes and proteins in a complex of feedback loops.

"We found a long RNA antisense transcript that arises from the frequency gene, known to encode factors important for the operation of the circadian clock in Neurospora," says Dunlap. "The sense transcript encodes proteins that are involved in the feedback loop that is the oscillator in the clock. The antisense transcript runs in the opposite direction, and apparently does not encode a protein, so its actual role is unknown at present. It may simply bock translation, or it may destabilize the sense message. Antisense transcripts are already known, but usually they are quite small, on the order of 20 to 25 bases. This one is quite large, nearly 5,000 bases."

In normal bread mold strains living in the dark, levels of antisense frequency transcripts cycle with respect to the amount of sense frequency transcripts, and they are inducible by light, the researchers determined. However, in strains mutated to abolish induction of antisense frequency RNA by light, the internal clock time was delayed, and resetting of the clock by light was altered.

If similar environmental factors regulate both sense and antisense transcripts, the authors suggest, a role for antisense frequency RNA might be to confer the ability to keep accurate time by limiting the clock response to extremes in the environment. Likewise other antisense RNAs might be involved in maintaining internal stability in other organisms.

DMS Communications | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>