Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Riverside scientists isolate microorganisms that break down a toxic pesticide


Isolated purified bacterial (left) and fungal (right) strains decomposing endosulfan. (Photo credit: Judy Chappell.)

UC Riverside researchers Tariq Siddique, William Frankenberger and Ben Okeke with samples of isolated purified bacterial and fungal strains that decompose endosulfan. (Photo credit: Judy Chappell.)

Research is key step in detoxifying endosulfan toward improving soil and water quality

Scientists at the University of California, Riverside report in the Journal of Environmental Quality (JEQ) that they have isolated microorganisms capable of degrading endosulfan, a chlorinated insecticide widely used all over the world and which is currently registered to control insects and mites on 60 U.S. crops. JEQ, established in 1972, is published jointly by the American Society of Agronomy, Crop Science Society of America, and the Soil Science Society of America.

Bioremediation of contaminated sites and water bodies by using these microbial strains will provide an environment free of endosulfan toxicity, the researchers argue in their paper. The research stands to benefit the agrochemical industry and environmental agencies involved in remediation of soil and water contaminated with organochlorine pesticides. Currently, bioremediation is considered the most cost-effective technology to remediate contaminants, including pesticides. The usefulness of the new technology may be best measured economically in soil and water quality impacted by pesticide spillage, overdosing, and cleanup of agrochemical equipment.

Many health hazards are associated with endosulfan. Endosulfan is a persistent organic pollutant or "POP" that enters the air, water, and soil during its use and manufacture. Owing to the persistence in the environment, residues of endosulfan can enter the food chain and directly affect public health. Endosulfan’s residues have also been found in sediments and in surface and ground waters. Endosulfan affects the central nervous system, kidney, liver, blood chemistry and parathyroid gland and has reproductive, teratogenic (causing birth defects) and mutagenic (causing genes to mutate more frequently) effects.

"We have been successful in isolating strains that can use endosulfan as a carbon and energy source," said William Frankenberger, director of the UCR Center for Technology Development and professor of soil science and soil microbiologist at UC Riverside. "Pollutants are rapidly degraded by microorganisms when used as a carbon and energy source. Out of 10 microorganisms isolated and screened for their degradative capabilities towards endosulfan degradation, the strains we isolated - Fusarium ventricosum and Pandoraea sp. - degraded about 90% and 83% of 100 ppm endosulfan, respectively, in 15 days using the pesticide as a carbon and energy source. Other bacterial strains that we isolated using endosulfan as a sulfur source could degrade about 70% endosulfan."

Total average annual use of endosulfan is estimated at approximately 1.38 million pounds of active ingredient. Classified as an organochlorine (the same family of pesticide as DDT and dieldrin), endosulfan and its breakdown products are persistent in the environment with an estimated half-life of 9 months to 6 years. It is one of the most commonly detected pesticides in U.S. water (38 states).

"In isolating these microbial strains, various environmental samples were collected from different sites," said Frankenberger, who is one of the co-authors of the JEQ paper. "Enrichment techniques were used to isolate microbial strains which were capable of degrading endosulfan. The isolated microorganisms were intensively screened for their degradative capabilities towards endosulfan degradation, purified and identified by molecular tools."

The results of the study suggest that these strains are a valuable source of endosulfan-degrading enzymes and may be used for the detoxification of endosulfan in contaminated soils, wastedumps and water bodies, as well as agricultural dealership sites, waste water from recycling plants and unused or expired stockpiles of endosulfan.

This research was conducted in the Department of Environmental Sciences at UC Riverside during 2001-2002. The department offers B.S. and B.A. degrees in Environmental Sciences, and M.S. and Ph.D. degrees in Soil and Water Sciences. The department is part of the College of Natural and Agricultural Sciences. The forerunner of the department was an agricultural chemistry research unit in the world-renowned California Citrus Research Center and Agricultural Experiment Station established in Riverside in 1907.

Iqbal Pittalwala | UC Riverside
Further information:

More articles from Life Sciences:

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>