Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists isolate microorganisms that break down a toxic pesticide

28.02.2003


Isolated purified bacterial (left) and fungal (right) strains decomposing endosulfan. (Photo credit: Judy Chappell.)


UC Riverside researchers Tariq Siddique, William Frankenberger and Ben Okeke with samples of isolated purified bacterial and fungal strains that decompose endosulfan. (Photo credit: Judy Chappell.)


Research is key step in detoxifying endosulfan toward improving soil and water quality

Scientists at the University of California, Riverside report in the Journal of Environmental Quality (JEQ) that they have isolated microorganisms capable of degrading endosulfan, a chlorinated insecticide widely used all over the world and which is currently registered to control insects and mites on 60 U.S. crops. JEQ, established in 1972, is published jointly by the American Society of Agronomy, Crop Science Society of America, and the Soil Science Society of America.

Bioremediation of contaminated sites and water bodies by using these microbial strains will provide an environment free of endosulfan toxicity, the researchers argue in their paper. The research stands to benefit the agrochemical industry and environmental agencies involved in remediation of soil and water contaminated with organochlorine pesticides. Currently, bioremediation is considered the most cost-effective technology to remediate contaminants, including pesticides. The usefulness of the new technology may be best measured economically in soil and water quality impacted by pesticide spillage, overdosing, and cleanup of agrochemical equipment.



Many health hazards are associated with endosulfan. Endosulfan is a persistent organic pollutant or "POP" that enters the air, water, and soil during its use and manufacture. Owing to the persistence in the environment, residues of endosulfan can enter the food chain and directly affect public health. Endosulfan’s residues have also been found in sediments and in surface and ground waters. Endosulfan affects the central nervous system, kidney, liver, blood chemistry and parathyroid gland and has reproductive, teratogenic (causing birth defects) and mutagenic (causing genes to mutate more frequently) effects.

"We have been successful in isolating strains that can use endosulfan as a carbon and energy source," said William Frankenberger, director of the UCR Center for Technology Development and professor of soil science and soil microbiologist at UC Riverside. "Pollutants are rapidly degraded by microorganisms when used as a carbon and energy source. Out of 10 microorganisms isolated and screened for their degradative capabilities towards endosulfan degradation, the strains we isolated - Fusarium ventricosum and Pandoraea sp. - degraded about 90% and 83% of 100 ppm endosulfan, respectively, in 15 days using the pesticide as a carbon and energy source. Other bacterial strains that we isolated using endosulfan as a sulfur source could degrade about 70% endosulfan."

Total average annual use of endosulfan is estimated at approximately 1.38 million pounds of active ingredient. Classified as an organochlorine (the same family of pesticide as DDT and dieldrin), endosulfan and its breakdown products are persistent in the environment with an estimated half-life of 9 months to 6 years. It is one of the most commonly detected pesticides in U.S. water (38 states).

"In isolating these microbial strains, various environmental samples were collected from different sites," said Frankenberger, who is one of the co-authors of the JEQ paper. "Enrichment techniques were used to isolate microbial strains which were capable of degrading endosulfan. The isolated microorganisms were intensively screened for their degradative capabilities towards endosulfan degradation, purified and identified by molecular tools."

The results of the study suggest that these strains are a valuable source of endosulfan-degrading enzymes and may be used for the detoxification of endosulfan in contaminated soils, wastedumps and water bodies, as well as agricultural dealership sites, waste water from recycling plants and unused or expired stockpiles of endosulfan.

This research was conducted in the Department of Environmental Sciences at UC Riverside during 2001-2002. The department offers B.S. and B.A. degrees in Environmental Sciences, and M.S. and Ph.D. degrees in Soil and Water Sciences. The department is part of the College of Natural and Agricultural Sciences. The forerunner of the department was an agricultural chemistry research unit in the world-renowned California Citrus Research Center and Agricultural Experiment Station established in Riverside in 1907.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=535

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>