Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at The Scripps Research Institute Make Strides in Addressing Mysteries of Ozone in the Human Body

28.02.2003


In what is a first for biology, a team of investigators at The Scripps Research Institute (TSRI) is reporting that the human body makes ozone.

Led by TSRI President Richard Lerner, Ph.D. and Associate Professor in the Department of Chemistry Paul Wentworth, Jr, Ph.D., who made the original discovery, the team has been slowly gathering evidence over the last few years that the human body produces the reactive gas—most famous as the ultraviolet ray-absorbing component of the ozone layer—as part of a mechanism to protect it from bacteria and fungi.

"Ozone was a big surprise," says TSRI Professor Bernard Babior, M.D., Ph.D. "But it seems that biological systems manufacture ozone, and that ozone has an effect on those biological systems."



Now, in an important development in this unfolding story, Babior, Wentworth, and their TSRI colleagues report in an upcoming issue of the journal Proceedings of the National Academy of Sciences that the ozone appears to be produced in a process involving human immune cells known as neutrophils and human immune proteins known as antibodies.

"It is a tremendously efficient chemical and biological process," says Wentworth, who adds that the presence of ozone in the human body may be linked to inflammation, and therefore this work may have tremendous ramifications for treating inflammatory diseases.

The Ozone Hole in Each One of Us

Ozone is a reactive form of oxygen that exists naturally as a trace gas in the atmosphere. It is perhaps best known for its crucial role absorbing ultraviolet radiation in the stratosphere, where it is concentrated in a so-called ozone layer, protecting life on earth from solar radiation. Ozone is also a familiar component of air in industrial and urban settings where the gas is a hazardous component of smog. However, ozone has never before been detected in biology.

Two years ago, Lerner and Wentworth demonstrated that antibodies are able to produce ozone and other chemical oxidants when they are fed a reactive form of oxygen called singlet oxygen. And late last year, Lerner, Wentworth, and Babior demonstrated that the oxidants produced by antibodies can destroy bacteria by poking holes in their cell walls.

This was a completely unexpected development, since for the last 100 years, immunologists believed that antibodies—proteins secreted into the blood by the immune system—acted only to recognize foreign pathogens and attract lethal "effector" immune cells to the site of infection.

Questions, Answers, and More Questions

The question still remained, however, as to how the antibodies were making the ozone. The TSRI team knew that in order to make the ozone and other highly reactive oxidants, the antibodies had to use a starting material known as singlet oxygen, a rare, excited form of oxygen.

Now Babior and Wentworth believe they have found where the singlet oxygen comes from—one of the effector immune cells called neutrophils which are little cellular factories that produce singlet oxygen and other oxidants. During an immune response, the neutrophils engulf and destroy bacteria and fungi by blasting them with these oxidants.

The work of the TSRI scientists suggests that the antibacterial effect of neutrophils is enhanced by antibodies. In addition to killing the bacteria themselves, the neutrophils feed singlet oxygen to the antibodies, which convert it into ozone, adding weapons to the assault.

"This is really something new, and there are a million questions [that follow]," says Babior. "What does the ozone do to the body’s proteins and nucleic acids? Can neutrophils make ozone without the antibodies? Is ozone made by other cells? How long does ozone last in the body? And, most importantly, how will these discoveries help to cure disease?"

The research team continues to investigate.

The article, "Investigating antibody-catalyzed ozone generation by human neutrophils," is authored by Bernard M. Babior, Cindy Takeuchi, Julie Ruedi, Abel Gutierrez, and Paul Wentworth, Jr. The article will be available online this week at: http://www.pnas.org/cgi/doi/10.1073/pnas.0530 251100, and it will be published in an upcoming issue of the journal Proceedings of the National Academy of Sciences .

The research was funded by the National Institutes of Health (NIH), through research grants and through a training grant; and by The Skaggs Institute for Chemical Biology.


For more information contact:
Jason Bardi
10550 North Torrey Pines Road
La Jolla, California 92037

Tel: 858.784.9254
Fax: 858.784.8118
jasonb@scripps.edu

Jason Bardi | Scripps
Further information:
http://www.pnas.org/cgi/content/abstract/0530251100v1

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>